In Situ Characterisation of Austenite/Ferrite Transformation Kinetics and Modelling of Interphase Precipitation Inter-Sheet Spacing in V Microalloyed HSLA Steels

Article Preview

Abstract:

A new generation of low-carbon microalloyed High Strength Low Alloy (HSLA) steels has been developed to utilize a combination of single-phase ferritic microstructures and optimized interphase precipitation to provide high level strength and exceptional formability. The interphase precipitation reaction is a transient process lending itself strongly to take advantage of in-situ characterization techniques. The austenite/ferrite interface kinetics during isothermal transformation at 1003 K is measured using HT-CSLM, the pre-exponential effective mobility constant was found to be mobility 0.822 (m J)/(mole s). The V interphase precipitation is characterised using TEM at isothermal transformation temperatures of 923 and 973 K as having inter-sheet spacing of 22±7 and 32±9 nm respectively. Interphase precipitation inter-sheet-spacing is simulated using a revised Quasi-Ledge model and qualitatively predicts the observed trends observed for inter-sheet spacing. The results of in-situ characterisation and modelling suggest that it is possible to optimize the strengthening potential of the precipitation processes by controlling the thermal processing of microalloyed HSLA.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

356-362

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Gladman, The Physical Metallurgy of Microalloyed Steels, Institute of Materials, (2002).

Google Scholar

[2] T. Baker, Processes, microstructure and properties of vanadium microalloyed steels, Mater. Sci. Technol. 25 (2009) 1083–1107.

Google Scholar

[3] R. Lagneborg, B. Hutchinson, T. Siwecki, S. Zajac, The Role of Vanadium in Microalloyed Steels, 2nd ed., Swerea KIMAB, Stockholm, (2014).

Google Scholar

[4] Y. Funakawa, T. Shiozaki, K. Tomita, T. Saito, H. Nakata, M. Suwa, et al., High Tensile Hot Rolled Steel Sheet And Method For Production Therof, 01980929. 2, (2002).

Google Scholar

[5] R.A. Rijkenberg, A high-strength hot-rolled steel strip or sheet with excelent formability and fatigue performance and a method of manufacturing said steel strip or sheet, WO2014EP52334 20140206, (2014).

DOI: 10.4271/j1392_198406

Google Scholar

[6] Y. Funakawa, T. Shiozaki, K. Tomita, T. Yamamoto, E. Maeda, Development of High Strength Hot-rolled Sheet Steel Consisting of Ferrite and Nanometer-sized Carbides, ISIJ Int. 44 (2004) 1945–(1951).

DOI: 10.2355/isijinternational.44.1945

Google Scholar

[7] M. -Y. Chen, M. Gouné, M. Verdier, Y. Bréchet, J. -R. Yang, Interphase precipitation in vanadium-alloyed steels: Strengthening contribution and morphological variability with austenite to ferrite transformation, Acta Mater. 64 (2014) 78–92.

DOI: 10.1016/j.actamat.2013.11.025

Google Scholar

[8] P.R. Rios, Morphology of interphase precipitation in microalloyed steels, J. Mater. Sci. Lett. 10 (1991) 981–983.

DOI: 10.1007/bf00722153

Google Scholar

[9] W.J. Liu, Computer simulation of VC Precipitation at Moving γ/α Interfaces, Metall. Trans. A. 24 (1993) 2195–2207.

DOI: 10.1007/bf02648594

Google Scholar

[10] P.R. Rios, A model for interphase precipitation in stoichiometrically balanced vanadium steels, J. Mater. Sci. 30 (1995) 1872–1878.

DOI: 10.1007/bf00351624

Google Scholar

[11] R. Lagneborg, S. Zajac, A model for interphase precipitation in V-microalloyed structural steels, Metall. Mater. Trans. A. 31 (2001) 1–12.

DOI: 10.1007/s11661-001-0249-9

Google Scholar

[12] R. Okamoto, J. Ågren, A model for interphase precipitation based on finite interface solute drag theory, Acta Mater. 58 (2010) 4791–4803.

DOI: 10.1016/j.actamat.2010.05.016

Google Scholar

[13] T. Murakami, H. Hatano, G. Miyamoto, T. Furuhara, Effects of Ferrite Growth Rate on Interphase Boundary Precipitation in V Microalloyed Steels, ISIJ Int. 52 (2012) 616–625.

DOI: 10.2355/isijinternational.52.616

Google Scholar

[14] M. -Y. Chen, M. Gouné, M. Militzer, Y. Bréchet, J. -R. Yang, Superledge Model for Interphase Precipitation During Austenite-to-Ferrite Transformation, Metall. Mater. Trans. A. 45 (2014) 5351–5361.

DOI: 10.1007/s11661-014-2486-8

Google Scholar

[15] J. Sietsma, S. Van Der Zwaag, A concise model for mixed-mode phase transformations in the solid state, Acta Mater. 52 (2004) 4143–4152.

DOI: 10.1016/j.actamat.2004.05.027

Google Scholar

[16] K. Taylor, Solubility products for titanium, vanadium, and niobium-carbide in ferrite, Scr. Metall. Mater. 32 (1995) 7–12.

DOI: 10.1016/s0956-716x(99)80002-8

Google Scholar

[17] C. Bos, J. Sietsma, A mixed-mode model for partitioning phase transformations, Scr. Mater. 57 (2007) 1085–1088.

DOI: 10.1016/j.scriptamat.2007.08.030

Google Scholar

[18] M. Onink, F.D. Tichelaar, C.M. Brakman, E.J. Mittemeijer, S. van der Zwaag, An in situ hot stage TEM study of the decomposition of Fe-C austenites. pdf, J. Mater. Sci. 30 (1995) 6223–6234.

DOI: 10.1007/bf00369670

Google Scholar

[19] J.H. Jang, C. -H. Lee, Y. -U. Heo, D. -W. Suh, Stability of (Ti, M)C (M=Nb, V, Mo and W) carbide in steels using first-principles calculations, Acta Mater. 60 (2012) 208–217.

DOI: 10.1016/j.actamat.2011.09.051

Google Scholar

[20] I. Kaur, Y. Mishin, W. Gust, Fundamentals of grain and interphase boundary diffusion, Third edit, John Wiley & Sons, Chichester, (1995).

Google Scholar