[1]
T. Gladman, The Physical Metallurgy of Microalloyed Steels, Institute of Materials, (2002).
Google Scholar
[2]
T. Baker, Processes, microstructure and properties of vanadium microalloyed steels, Mater. Sci. Technol. 25 (2009) 1083–1107.
Google Scholar
[3]
R. Lagneborg, B. Hutchinson, T. Siwecki, S. Zajac, The Role of Vanadium in Microalloyed Steels, 2nd ed., Swerea KIMAB, Stockholm, (2014).
Google Scholar
[4]
Y. Funakawa, T. Shiozaki, K. Tomita, T. Saito, H. Nakata, M. Suwa, et al., High Tensile Hot Rolled Steel Sheet And Method For Production Therof, 01980929. 2, (2002).
Google Scholar
[5]
R.A. Rijkenberg, A high-strength hot-rolled steel strip or sheet with excelent formability and fatigue performance and a method of manufacturing said steel strip or sheet, WO2014EP52334 20140206, (2014).
DOI: 10.4271/j1392_198406
Google Scholar
[6]
Y. Funakawa, T. Shiozaki, K. Tomita, T. Yamamoto, E. Maeda, Development of High Strength Hot-rolled Sheet Steel Consisting of Ferrite and Nanometer-sized Carbides, ISIJ Int. 44 (2004) 1945–(1951).
DOI: 10.2355/isijinternational.44.1945
Google Scholar
[7]
M. -Y. Chen, M. Gouné, M. Verdier, Y. Bréchet, J. -R. Yang, Interphase precipitation in vanadium-alloyed steels: Strengthening contribution and morphological variability with austenite to ferrite transformation, Acta Mater. 64 (2014) 78–92.
DOI: 10.1016/j.actamat.2013.11.025
Google Scholar
[8]
P.R. Rios, Morphology of interphase precipitation in microalloyed steels, J. Mater. Sci. Lett. 10 (1991) 981–983.
DOI: 10.1007/bf00722153
Google Scholar
[9]
W.J. Liu, Computer simulation of VC Precipitation at Moving γ/α Interfaces, Metall. Trans. A. 24 (1993) 2195–2207.
DOI: 10.1007/bf02648594
Google Scholar
[10]
P.R. Rios, A model for interphase precipitation in stoichiometrically balanced vanadium steels, J. Mater. Sci. 30 (1995) 1872–1878.
DOI: 10.1007/bf00351624
Google Scholar
[11]
R. Lagneborg, S. Zajac, A model for interphase precipitation in V-microalloyed structural steels, Metall. Mater. Trans. A. 31 (2001) 1–12.
DOI: 10.1007/s11661-001-0249-9
Google Scholar
[12]
R. Okamoto, J. Ågren, A model for interphase precipitation based on finite interface solute drag theory, Acta Mater. 58 (2010) 4791–4803.
DOI: 10.1016/j.actamat.2010.05.016
Google Scholar
[13]
T. Murakami, H. Hatano, G. Miyamoto, T. Furuhara, Effects of Ferrite Growth Rate on Interphase Boundary Precipitation in V Microalloyed Steels, ISIJ Int. 52 (2012) 616–625.
DOI: 10.2355/isijinternational.52.616
Google Scholar
[14]
M. -Y. Chen, M. Gouné, M. Militzer, Y. Bréchet, J. -R. Yang, Superledge Model for Interphase Precipitation During Austenite-to-Ferrite Transformation, Metall. Mater. Trans. A. 45 (2014) 5351–5361.
DOI: 10.1007/s11661-014-2486-8
Google Scholar
[15]
J. Sietsma, S. Van Der Zwaag, A concise model for mixed-mode phase transformations in the solid state, Acta Mater. 52 (2004) 4143–4152.
DOI: 10.1016/j.actamat.2004.05.027
Google Scholar
[16]
K. Taylor, Solubility products for titanium, vanadium, and niobium-carbide in ferrite, Scr. Metall. Mater. 32 (1995) 7–12.
DOI: 10.1016/s0956-716x(99)80002-8
Google Scholar
[17]
C. Bos, J. Sietsma, A mixed-mode model for partitioning phase transformations, Scr. Mater. 57 (2007) 1085–1088.
DOI: 10.1016/j.scriptamat.2007.08.030
Google Scholar
[18]
M. Onink, F.D. Tichelaar, C.M. Brakman, E.J. Mittemeijer, S. van der Zwaag, An in situ hot stage TEM study of the decomposition of Fe-C austenites. pdf, J. Mater. Sci. 30 (1995) 6223–6234.
DOI: 10.1007/bf00369670
Google Scholar
[19]
J.H. Jang, C. -H. Lee, Y. -U. Heo, D. -W. Suh, Stability of (Ti, M)C (M=Nb, V, Mo and W) carbide in steels using first-principles calculations, Acta Mater. 60 (2012) 208–217.
DOI: 10.1016/j.actamat.2011.09.051
Google Scholar
[20]
I. Kaur, Y. Mishin, W. Gust, Fundamentals of grain and interphase boundary diffusion, Third edit, John Wiley & Sons, Chichester, (1995).
Google Scholar