Electrical Conductivity of BioBased Shape Memory Polyurethane Filled with CNT

Article Preview

Abstract:

Biobased shape memory polyurethane filled with carbon nanotubes (CNT) were prepared using two step polymerization process. The bio based shape memory polyurethane (SMPU) were composed of polycaprolactonediol, polyol based on palm oil, 4, 4’-diphenylmethane diisocyanate and 1, 4-butanediol. In this paper, CNTs has been used as fillers to introduce the electrical conductivity in the SMPU. The bio-based shape memory polyurethane shows electrical conductivity with addition of 7 wt% CNT.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

69-72

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Lendlein & S. Kelch, Shape memory polymers, Angew. Chem. Int. Ed. 41 (2002): 2034- (2057).

DOI: 10.1002/1521-3773(20020617)41:12<2034::aid-anie2034>3.0.co;2-m

Google Scholar

[2] I. H Paik, N. S. Goo, Y. C Jung & J. W. Cho, Development and application of conducting shape memory polyurethane actuators, Smart Mater. Struct. 15 (2006): 1476-1482.

DOI: 10.1088/0964-1726/15/5/037

Google Scholar

[3] B. Das, M. Mandal, A. Upadhyay, P. Chattopadhyay & N. Karak. Bio-based hyperbranched polyurethane/Fe3O4 nanocomposites: Smart antibacterial biomaterials for biomedical devices and implants. Biomedical Materials 8 (3). (2013).

DOI: 10.1088/1748-6041/8/3/035003

Google Scholar

[4] H. Deka & N. Karak. Shape-memory property and characterization of epoxy resin-modified mesua ferrea L. seed oil-based hyperbranched polyurethane. J. of App. Polym. Sci. 116 (2010): 106-115.

DOI: 10.1002/app.31516

Google Scholar

[5] H. Kalita & N. Karak. Biobased hyperbranched shape-memory polyurethanes: Effect of different vegetable oils. J. of App. Polym. Sci. 131 (2014): 39579.

DOI: 10.1002/app.39579

Google Scholar

[6] S. Miao, N. Callow, P. Wang, Y. Liu, Z. Su & S. Zhang. Soybean Oil-Based Polyurethane Networks: Shape-Memory Effects and Surface Morphologies. Journal of the American Oil Chemists' Society. 90 (2013): 1415-1421.

DOI: 10.1007/s11746-013-2273-5

Google Scholar

[7] S. A. Zubir, S. Ahmad & E. S. Ali. Palm oil polyol/polyurethane shape memory nanocomposites. Applied Mechanics and Materials. 291-294 (2013): 2666-2669.

DOI: 10.4028/www.scientific.net/amm.291-294.2666

Google Scholar

[8] S. Rana, N. Karak, J.W. Cho & Y. H. Kim, Enhanced dispersion of carbon nanotubes in hyperbranched polyurethane and properties of nanocomposites, Nanotechnology, 19 (2008) 495707.

DOI: 10.1088/0957-4484/19/49/495707

Google Scholar

[9] I. H Paik, N. S. Goo, Y. C Jung & J. W. Cho, Development and application of conducting shape memory polyurethane actuators, Smart Mater. Struct. 15 (2006) 1476-1482.

DOI: 10.1088/0964-1726/15/5/037

Google Scholar

[10] H. Deka, N. Karak, R.D. Kalita & A.K. Buragohain, Biocompatible hyperbranched polyurethane/multi-walled carbon nanotube composites as shape memory materials, Carbon, 48 (2010) 2013-(2022).

DOI: 10.1016/j.carbon.2010.02.009

Google Scholar

[11] P. Pötschke, L. Häußler, S. Pegel, R. Steinberger, & G. Scholz. Thermoplastic Polyurethane Filled With Carbon Nanotubes For Electrical Dissipative And Conductive Applications. KGK. Kautschuk, Gummi, Kunststoffe, 60(9) (2007) 432-437.

Google Scholar