[1]
O.A. Oleinik, A.S. Shamaev and G.A. Yosifian, Mathematical Problems in Elasticity and Homogenization, North-Holland, Amsterdan(1992).
Google Scholar
[2]
X. Wang and L.Q. Cao, The hole-filling method and the uniform multiscale computation of the elastic equations in perforated domains, Int. J. Numer. Anal. Model, Vol. 5( 2008), p.612–634.
Google Scholar
[3]
L.Q. Cao, Multiscale asymptotic expansion and finite element methods for the mixed boundary value problems of second order elliptic equation in perforated domains, Numer. Math., Vol. 103(2006), p.11–45.
DOI: 10.1007/s00211-005-0668-4
Google Scholar
[4]
J.Z. Cui and T.M. Shin, The two-scale analysis method for bodies with small periodic configurations, Struct. Engineering and Mechanics, Vol. 6(1999), pp.601-614.
DOI: 10.12989/sem.1999.7.6.601
Google Scholar
[5]
R. Du and P.B. Ming, Convergence of the heterogeneous multi-scale finite element method for elliptic problem with non-smooth microstructure, Multiscale Model. Simul., Vol. 8(2010), pp.1770-1783.
DOI: 10.1137/090780754
Google Scholar
[6]
Y.P. Feng, M.X. Deng, X.F. Guan and J.Z. Cui, A two-scale finite element analysis of the thermo-elastic effects in composites, International Journal of Computational Method, Vol. 11(2014), p.1350066.
DOI: 10.1142/s0219876213500667
Google Scholar
[7]
Y.P. Feng, J.Z. Cui and M.X. Deng, The two-scale finite element computation for thermoelastic problem in periodic perforated domain, Acta Physica Sinica, Vol. 58(2009), p. s327–s337.
Google Scholar