Evaluation of Mechanochemical and Hydrothermal Transformations in a Wet-Milled Alumina by Transmission Electron Microscopy and Thermal Analysis

Article Preview

Abstract:

Milling and hydrothermal treatment of alumina powders in aqueous medium can result in surface transformations generating aluminum hydroxides. The aim of this work was to advance the understanding on these transformations. A α-alumina powder was ball milled in water at different pHs for 10 h, and then autoclaved (150 °C, 3 atm, 3 h). The powders were analyzed by transmission electron microscopy, differential scanning calorimetry simultaneously with thermogravimetry, X-ray diffraction, and infrared spectroscopy. It was observed that milling in basic medium caused the formation of doyleite [Al (OH3)] nanoparticles, which were fully converted to boehmite (AlOOH) by hydrothermal treatment. The boehmite fraction determined by thermal analysis was 1.7 wt%. The powder milled in acid medium had no mechanochemical and hydrothermal transformations.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

46-51

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Nagaoka, T. Tsugoshi, Y. Hotta, M. Yasuoka, K. Watari: J. Mater. Sci. Vol. 41 (2006), p.7401.

Google Scholar

[2] C. Duran, K. Sato, Y. Hotta, T. Nagaoka, K. Watari: J. Ceram. Soc. Jpn. Vol. 116 (2008), p.1175.

Google Scholar

[3] B. Kindl, D.J. Carlsson, Y. Deslandes, J.M.A. Hoddenbagh: Ceram. Int. Vol. 17 (1991), p.347.

Google Scholar

[4] A.Y. Chen, J.D. Cawley: J. Am. Ceram. Soc. Vol. 75 (1992), p.575.

Google Scholar

[5] S. Ananthakumar, V. Raja, K.G.K. Warrier: Mater. Lett. Vol. 43 (2000), p.174.

Google Scholar

[6] F. Stenger, S. Mende, J. Schwedes, W. Peukert: Powder Technol. Vol. 156 (2005), p.103.

Google Scholar

[7] Y. Hotta, T. Shirai, K. Sato, H. Yilmaz, K. Watari: J. Am. Ceram. Soc. Vol. 92 (2009), p.1198.

Google Scholar

[8] H.N. Yoshimura, M.B. Lima: Mater. Lett. Vol. 137 (2014), p.293.

Google Scholar

[9] K. Sato, Y. Hotta, H. Yilmaz, K. Sato, K. Watari: J. Colloid Interface Sci. Vol. 331 (2009), p.221.

Google Scholar

[10] Y. Hotta, K. Tsunekawa, T. Shirai, K. Sato, M. Yasuoka, K. Watari: J. Eur. Ceram. Soc. Vol. 29 (2009), p.869.

Google Scholar

[11] R. Tettenhorst, D.A. Hofmann: Clays Clay Miner. Vol. 28 (1980), p.373.

Google Scholar

[12] T. Tsuchida, N. Ichikawa: React. Solids Vol. 7 (1989), p.207.

Google Scholar

[13] G. Li, R.L. Smith Jr., H. Inomata, K. Arai: Mater. Lett. Vol. 53 (2002), p.175.

Google Scholar

[14] X. Bokhimi, J. Sánchez-Valente, F. Pedraza: J. Solid State Chem. Vol. 166 (2002), p.182.

Google Scholar

[15] J.Q. Wang, J.L. Liu, X.Y. Liu, M.H. Qiao, Y. Pei, K.N. Fan: Sci . Adv. Mater. Vol. 1 (2009), p.77.

Google Scholar