[1]
Avouris P. Molecular electronics with carbon nanotubes. Accounts Chem. Res. 35, 1026-1034 (2002).
DOI: 10.1021/ar010152e
Google Scholar
[2]
Tans S.J., Verschueren A.R.M., Dekker C. Room-temperature transistor based on a single carbon nanotube. Nature 393, 49-52 (1998).
DOI: 10.1038/29954
Google Scholar
[3]
Yao Z., Postma H.W.C., Balents L., Dekker C. Carbon nanotube intramolecular junctions. Nature 402, 273-276 (1999).
DOI: 10.1038/46241
Google Scholar
[4]
Keren K., Berman R.S., Buchstab E., Sivan U., Braun E. DNA-templated carbon nanotube field-effect transistor. Science 302, 1380-1382 (2003).
DOI: 10.1126/science.1091022
Google Scholar
[5]
Tapaszto L., Dobrik G., Lambin P., Biro L.P. Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography, Nature Nanotechnology 3, 397-401 (2008).
DOI: 10.1038/nnano.2008.149
Google Scholar
[6]
Nemes-Incze P., Magda G., Kamarás K., Biró L. P. Crystallographically selective nanopatterning of graphene on SiO2, Nano Research 3, 110 (2010).
DOI: 10.1007/s12274-010-1015-3
Google Scholar
[7]
Datta, S. S., Strachan, D. R., Khamis, S. M., Johnson, A. T. C. Crystallographic etching of few-layer graphene. Nano Lett. 8, 1912–1915 (2008).
DOI: 10.1021/nl080583r
Google Scholar
[8]
Wu Z.S., Ren W.C., Gao L.B., Liu B.L., Zhao J.P., Cheng H.M. Efficient Synthesis of Graphene Nanoribbons Sonochemically Cut from Graphene Sheets, Nano Research, 3, 16-22 (2010).
DOI: 10.1007/s12274-010-1003-7
Google Scholar
[9]
Jiao L., Zhang L., Wang X., Diankov G., Dai H. Narrow graphene nanoribbons from carbon nanotubes, Nature 458, 877-880 (2009).
DOI: 10.1038/nature07919
Google Scholar
[10]
Son Y.W., Cohen M.L., Louie S.G. Half-metallic graphene nanoribbons, Nature 444 (2006).
DOI: 10.1038/nature05180
Google Scholar
[11]
Son Q.F., Xie X.C. Quantum transport through a graphene nanoribbon-superconductor junction, Journal of Physics, Condensed Matter 21, 344204 (2009).
DOI: 10.1088/0953-8984/21/34/344204
Google Scholar
[12]
Akhemov A.R., Bardarson J.H., Rycerz A., Beenakker C.W.J. Theory of the valley-valve effect in graphene nanoribbons, Physical Review B 77, 205416 (2008).
DOI: 10.1103/physrevb.77.205416
Google Scholar
[13]
Han M.Y., Özyilmaz B., Zhang Y., Kim P. Energy Band-Gap Engineering of Graphene Nanoribbons, Phys. Rev. Lett. 98, 206805 (2007).
DOI: 10.1103/physrevlett.98.206805
Google Scholar
[14]
Alam K. Transport and performance of a zero-Schottky barrier and doped contacts graphene nanoribbon transistors, Semiconductor Science and Technology 24, 015007 (2009).
DOI: 10.1088/0268-1242/24/1/015007
Google Scholar
[15]
Xie Y.E., Chen Y.P., Sun L.Z., Zhang K.W. Zhong J. The effect of corner form on electron transport of L-shaped graphene nanoribbons, Physica B-Condensed Matter 404, 1771-1775 (2009).
DOI: 10.1016/j.physb.2009.02.020
Google Scholar
[16]
Kong X.L., Xiong Y.J. Resonance Transport of Graphene Nanoribbon T-Shaped Junctions, Chinese Phys. Letters 27, 047202 (2010).
DOI: 10.1088/0256-307x/27/4/047202
Google Scholar
[17]
Li Y.F., Li B.R., Zhang H.L. The computational design of junctions between carbon nanotubes and graphene nanoribbons, Nanotechnology 20, 225202 (2009).
DOI: 10.1088/0957-4484/20/22/225202
Google Scholar
[18]
Chen Y.P., Xie Y.E., Sun L.Z., Zhong J.X. Asymmetric transport in asymmetric T-shaped graphene nanoribbons, Applied Physics Letters 93, 092104 (2008).
DOI: 10.1063/1.2978246
Google Scholar
[19]
Wang Z.F., Li Q.X., Shi Q.W., Wang X.P., Hou J.G., Zheng H.X., Yao Y., Chen J. Ballistic rectification in a Z-shaped graphene nanoribbon junction, Applied Physics Letter 92, 133119 (2008).
DOI: 10.1063/1.2906631
Google Scholar
[20]
Chen Y.P., Xie Y.E., Zhong J.X. Resonant transport and quantum bound states in Z-shaped graphene nanoribbons, Physics Letter A 372, 2928-5931 (2008).
DOI: 10.1016/j.physleta.2008.07.058
Google Scholar
[21]
Areshkin D.A., C.T. White C.T. Building Blocks for Integrated Graphene Circuits, Nanoletters 7, 3253-3259 (2007).
DOI: 10.1021/nl070708c
Google Scholar
[22]
Areshkin D.A., Nikolic B.K. I-V curve signatures of nonequilibrium-driven band gap collapse in magnetically ordered zigzag graphene nanoribbon two-terminal devices, Phys. Review B 79, 205430 (2009).
DOI: 10.1103/physrevb.79.205430
Google Scholar
[23]
Guo J. Modeling of graphene nanoribbon devices, Nanoscale 4, 5538-5548 (2012).
Google Scholar
[24]
Lee G.Y., Kang J.W. Controlling resonance frequencies of double-walled carbon nanotube oscillators with divided outertubes, J. of Nanoscience and Nanotechnology, 14, 6033-6037 (2014).
DOI: 10.1166/jnn.2014.8789
Google Scholar
[25]
Han S.S., Lee K.S., Lee H.M. Nucleation mechanism of carbon nanotube, Chemical Physics Letters 383, 321-325 (2004).
DOI: 10.1016/j.cplett.2003.11.033
Google Scholar
[26]
He L., Lu JQ., Jiang H. Controlled Carbon-Nanotube Junctions Self-Assembled from Graphene Nanoribbons, Small 5(24), 2802-2806 (2009).
DOI: 10.1002/smll.200900911
Google Scholar
[27]
László I., Zsoldos I. Graphene-based molecular dynamics nanolithography of fullerenes, nanotubes and other carbon structures, Europhysics Letters 99, 63001 (2012).
DOI: 10.1209/0295-5075/99/63001
Google Scholar
[28]
László I, Zsoldos I: Molecular dynamics simulation of carbon nanostructures: The C60 buckminsterfullerene Phys. Status Solidi B 249 2616-2619 (2012).
DOI: 10.1002/pssb.201200125
Google Scholar
[29]
László I., Zsoldos I. Molecular dynamics simulation of carbon nanostructures: The D5h C70 fullerene, Physica E 56, 427-430 (2014).
DOI: 10.1016/j.physe.2012.08.009
Google Scholar
[30]
Allen M.P., Tildesley D.J. Computer Simulation of Liquids, Clarendon Press, Oxford (1996).
Google Scholar
[31]
Frenkel D., Smit B. Understanding Molecular Simulation, Academic Press, San Diego (1996).
Google Scholar
[32]
D. Porezag, T. Frauenheim, T. Köhler, G. Seifert, R. Kaschner: Construction of tight-binding-like potentials on the basis of density-functional theory: application to carbon, Phys. Rev. B, 51, 12947-12957 (1995).
DOI: 10.1103/physrevb.51.12947
Google Scholar
[33]
L. Verlet: Computer Experiments, on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules, Phys. Rev., 159, 98-103 (1967).
DOI: 10.1103/physrev.159.98
Google Scholar
[34]
S. Nosé: A molecular dynamics method for simulations in the canonical ensemble, Mol. Phys. 52, 255-268 (1984).
DOI: 10.1080/00268978400101201
Google Scholar
[35]
W.G. Hoover: Canonical dynamics: Equilibrium phase-space distributions, Phys. Rev. A, 31, 1695-1697 (1985).
DOI: 10.1103/physreva.31.1695
Google Scholar
[36]
D Fülep, I Zsoldos, I László: Topological and energetic conditions for lithographic production of carbon nanotubes from graphene, Hindawi Publishing, Journal of Nanomaterials, Volume 2015, Article ID 379563 doi 10. 1155 /2015/379563 (2015).
DOI: 10.1155/2015/379563
Google Scholar