Position Sensitivity Study in Molecular Dynamics Simulations of Self-Organized Development of 3D Nanostructures

Article Preview

Abstract:

The sensitivity of defect free fusion of straight carbon nanotubes from graphene nanoribbons to the position of the nanoribbon edge positions has been investigated. A basic difference between the behavior of armchair and zigzag type nanoribbons was observed. When placing armchair type graphene nanoribbons above each other identical, fitting positions are obtained automatically. Zigzag type graphene nanoribbons, however, must not be placed above each other in identical positions. From the viewpoint of defect-free fusion, according to the MD simulations symmetric on nearly symmetric positions of the ribbon edges are favorable.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

216-221

Citation:

Online since:

February 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Avouris P. Molecular electronics with carbon nanotubes. Accounts Chem. Res. 35, 1026-1034 (2002).

DOI: 10.1021/ar010152e

Google Scholar

[2] Tans S.J., Verschueren A.R.M., Dekker C. Room-temperature transistor based on a single carbon nanotube. Nature 393, 49-52 (1998).

DOI: 10.1038/29954

Google Scholar

[3] Yao Z., Postma H.W.C., Balents L., Dekker C. Carbon nanotube intramolecular junctions. Nature 402, 273-276 (1999).

DOI: 10.1038/46241

Google Scholar

[4] Keren K., Berman R.S., Buchstab E., Sivan U., Braun E. DNA-templated carbon nanotube field-effect transistor. Science 302, 1380-1382 (2003).

DOI: 10.1126/science.1091022

Google Scholar

[5] Tapaszto L., Dobrik G., Lambin P., Biro L.P. Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography, Nature Nanotechnology 3, 397-401 (2008).

DOI: 10.1038/nnano.2008.149

Google Scholar

[6] Nemes-Incze P., Magda G., Kamarás K., Biró L. P. Crystallographically selective nanopatterning of graphene on SiO2, Nano Research 3, 110 (2010).

DOI: 10.1007/s12274-010-1015-3

Google Scholar

[7] Datta, S. S., Strachan, D. R., Khamis, S. M., Johnson, A. T. C. Crystallographic etching of few-layer graphene. Nano Lett. 8, 1912–1915 (2008).

DOI: 10.1021/nl080583r

Google Scholar

[8] Wu Z.S., Ren W.C., Gao L.B., Liu B.L., Zhao J.P., Cheng H.M. Efficient Synthesis of Graphene Nanoribbons Sonochemically Cut from Graphene Sheets, Nano Research, 3, 16-22 (2010).

DOI: 10.1007/s12274-010-1003-7

Google Scholar

[9] Jiao L., Zhang L., Wang X., Diankov G., Dai H. Narrow graphene nanoribbons from carbon nanotubes, Nature 458, 877-880 (2009).

DOI: 10.1038/nature07919

Google Scholar

[10] Son Y.W., Cohen M.L., Louie S.G. Half-metallic graphene nanoribbons, Nature 444 (2006).

DOI: 10.1038/nature05180

Google Scholar

[11] Son Q.F., Xie X.C. Quantum transport through a graphene nanoribbon-superconductor junction, Journal of Physics, Condensed Matter 21, 344204 (2009).

DOI: 10.1088/0953-8984/21/34/344204

Google Scholar

[12] Akhemov A.R., Bardarson J.H., Rycerz A., Beenakker C.W.J. Theory of the valley-valve effect in graphene nanoribbons, Physical Review B 77, 205416 (2008).

DOI: 10.1103/physrevb.77.205416

Google Scholar

[13] Han M.Y., Özyilmaz B., Zhang Y., Kim P. Energy Band-Gap Engineering of Graphene Nanoribbons, Phys. Rev. Lett. 98, 206805 (2007).

DOI: 10.1103/physrevlett.98.206805

Google Scholar

[14] Alam K. Transport and performance of a zero-Schottky barrier and doped contacts graphene nanoribbon transistors, Semiconductor Science and Technology 24, 015007 (2009).

DOI: 10.1088/0268-1242/24/1/015007

Google Scholar

[15] Xie Y.E., Chen Y.P., Sun L.Z., Zhang K.W. Zhong J. The effect of corner form on electron transport of L-shaped graphene nanoribbons, Physica B-Condensed Matter 404, 1771-1775 (2009).

DOI: 10.1016/j.physb.2009.02.020

Google Scholar

[16] Kong X.L., Xiong Y.J. Resonance Transport of Graphene Nanoribbon T-Shaped Junctions, Chinese Phys. Letters 27, 047202 (2010).

DOI: 10.1088/0256-307x/27/4/047202

Google Scholar

[17] Li Y.F., Li B.R., Zhang H.L. The computational design of junctions between carbon nanotubes and graphene nanoribbons, Nanotechnology 20, 225202 (2009).

DOI: 10.1088/0957-4484/20/22/225202

Google Scholar

[18] Chen Y.P., Xie Y.E., Sun L.Z., Zhong J.X. Asymmetric transport in asymmetric T-shaped graphene nanoribbons, Applied Physics Letters 93, 092104 (2008).

DOI: 10.1063/1.2978246

Google Scholar

[19] Wang Z.F., Li Q.X., Shi Q.W., Wang X.P., Hou J.G., Zheng H.X., Yao Y., Chen J. Ballistic rectification in a Z-shaped graphene nanoribbon junction, Applied Physics Letter 92, 133119 (2008).

DOI: 10.1063/1.2906631

Google Scholar

[20] Chen Y.P., Xie Y.E., Zhong J.X. Resonant transport and quantum bound states in Z-shaped graphene nanoribbons, Physics Letter A 372, 2928-5931 (2008).

DOI: 10.1016/j.physleta.2008.07.058

Google Scholar

[21] Areshkin D.A., C.T. White C.T. Building Blocks for Integrated Graphene Circuits, Nanoletters 7, 3253-3259 (2007).

DOI: 10.1021/nl070708c

Google Scholar

[22] Areshkin D.A., Nikolic B.K. I-V curve signatures of nonequilibrium-driven band gap collapse in magnetically ordered zigzag graphene nanoribbon two-terminal devices, Phys. Review B 79, 205430 (2009).

DOI: 10.1103/physrevb.79.205430

Google Scholar

[23] Guo J. Modeling of graphene nanoribbon devices, Nanoscale 4, 5538-5548 (2012).

Google Scholar

[24] Lee G.Y., Kang J.W. Controlling resonance frequencies of double-walled carbon nanotube oscillators with divided outertubes, J. of Nanoscience and Nanotechnology, 14, 6033-6037 (2014).

DOI: 10.1166/jnn.2014.8789

Google Scholar

[25] Han S.S., Lee K.S., Lee H.M. Nucleation mechanism of carbon nanotube, Chemical Physics Letters 383, 321-325 (2004).

DOI: 10.1016/j.cplett.2003.11.033

Google Scholar

[26] He L., Lu JQ., Jiang H. Controlled Carbon-Nanotube Junctions Self-Assembled from Graphene Nanoribbons, Small 5(24), 2802-2806 (2009).

DOI: 10.1002/smll.200900911

Google Scholar

[27] László I., Zsoldos I. Graphene-based molecular dynamics nanolithography of fullerenes, nanotubes and other carbon structures, Europhysics Letters 99, 63001 (2012).

DOI: 10.1209/0295-5075/99/63001

Google Scholar

[28] László I, Zsoldos I: Molecular dynamics simulation of carbon nanostructures: The C60 buckminsterfullerene Phys. Status Solidi B 249 2616-2619 (2012).

DOI: 10.1002/pssb.201200125

Google Scholar

[29] László I., Zsoldos I. Molecular dynamics simulation of carbon nanostructures: The D5h C70 fullerene, Physica E 56, 427-430 (2014).

DOI: 10.1016/j.physe.2012.08.009

Google Scholar

[30] Allen M.P., Tildesley D.J. Computer Simulation of Liquids, Clarendon Press, Oxford (1996).

Google Scholar

[31] Frenkel D., Smit B. Understanding Molecular Simulation, Academic Press, San Diego (1996).

Google Scholar

[32] D. Porezag, T. Frauenheim, T. Köhler, G. Seifert, R. Kaschner: Construction of tight-binding-like potentials on the basis of density-functional theory: application to carbon, Phys. Rev. B, 51, 12947-12957 (1995).

DOI: 10.1103/physrevb.51.12947

Google Scholar

[33] L. Verlet: Computer Experiments, on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules, Phys. Rev., 159, 98-103 (1967).

DOI: 10.1103/physrev.159.98

Google Scholar

[34] S. Nosé: A molecular dynamics method for simulations in the canonical ensemble, Mol. Phys. 52, 255-268 (1984).

DOI: 10.1080/00268978400101201

Google Scholar

[35] W.G. Hoover: Canonical dynamics: Equilibrium phase-space distributions, Phys. Rev. A, 31, 1695-1697 (1985).

DOI: 10.1103/physreva.31.1695

Google Scholar

[36] D Fülep, I Zsoldos, I László: Topological and energetic conditions for lithographic production of carbon nanotubes from graphene, Hindawi Publishing, Journal of Nanomaterials, Volume 2015, Article ID 379563 doi 10. 1155 /2015/379563 (2015).

DOI: 10.1155/2015/379563

Google Scholar