[1]
N. Mahato, A. Banerjee, A. Gupta, S. Omar and K. Balani, Progress in material selection for solid oxide fuel cell technology: A review. Prog. Mater. Sci. 72 (2015) 141–337.
DOI: 10.1016/j.pmatsci.2015.01.001
Google Scholar
[2]
I. Hasson, An investigation of two ceramic electron conductors for use in solid oxide fuel cell anodes, Master's Theses. (2011) Paper 22.
Google Scholar
[3]
H. Lee, I. Park, J. Park, G. Lee, Effects of dual porosity honeycomb structure in SSC e SDC composite cathode for SOFCs. International Journal of Hydrogen Energy, 40(35) (2015) 1–5.
DOI: 10.1016/j.ijhydene.2015.05.043
Google Scholar
[4]
H. Lv, B.Y. Zhao, Y.J. Wu, G. Sun, G. Chen, K.A. Hu, Effect of B-site doping on Sm0. 5Sr0. 5MxCo1-xO3−δ - properties for IT-SOFC cathode material (M = Fe, Mn). Mater. Res. Bull. 42(12) (2007) 1999–(2012).
DOI: 10.1016/j.materresbull.2007.02.007
Google Scholar
[5]
C.L. Chang, C.S. Hsu, J.B. Huang, P.H. Hsu, B.H. Hwang Preparation and characterization of SOFC cathodes made of SSC nanofibers. J. Alloy. Compd. 620 (2015) 233–239.
DOI: 10.1016/j.jallcom.2014.09.131
Google Scholar
[6]
X. Xi, X. Chen, G. Hou, N. Xu, Q. Zhang, Z. Tao, Fabrication and evaluation of Sm0. 5Sr0. 5CoO3−δ impregnated PrBaCo2O5+δ composite cathode for proton conducting SOFCs. Ceram. Int. 40(8) (2014) 13753–13756.
DOI: 10.1016/j.ceramint.2014.05.082
Google Scholar
[7]
A.J. Jacobson, Materials for solid oxide fuel cells. Chem. Mater. 22(3) (2010)660-674.
Google Scholar
[8]
A.T. Duong, D.R. Mumm, On the interaction of SSC and LSGM in composite SOFC electrodes, J. Power. Sources. 241 (2013) 281–287.
DOI: 10.1016/j.jpowsour.2013.04.046
Google Scholar
[9]
S.A.M. Ali, A. Muchtar, A. Bakar Sulong, N. Muhamad, E. Herianto Majlan, Influence of sintering temperature on the power density of samarium-doped-ceria carbonate electrolyte composites for low-temperature solid oxide fuel cells. Ceram. Int. 39(5) (2013).
DOI: 10.1016/j.ceramint.2013.01.002
Google Scholar
[10]
H.A. Rahman, A. Muchtar, N. Muhamad, H. Abdullah, Structure and thermal properties of La0. 6Sr0. 4Co0. 2Fe0. 8O3−δ–SDC carbonate composite cathodes for intermediate- to low-temperature solid oxide fuel cells, Ceram. Int. 38(2) (2012)1571-1576.
DOI: 10.1016/j.ceramint.2011.09.043
Google Scholar
[11]
J. Huang, F. Xie, C. Wang and Z. Mao, Development of solid oxide fuel cell materials for intermediate-to-low temperature operation. International Journal of Hydrogen Energy, 37(1) (2012) 877–883.
DOI: 10.1016/j.ijhydene.2011.04.030
Google Scholar
[12]
H. Seon Hong, S. Lee, C.S. Lee, Characterization of (Ni–Cu)/YSZ cermet composites fabricated using high-energy ball-milling: effect of Cu concentration on the composite performance, Ceram. Int. 41(4) (2015) 6122-6126.
DOI: 10.1016/j.ceramint.2014.12.158
Google Scholar
[13]
Y. Jing, J. Patakangas, P.D. Lund, B. Zhu, An improved synthesis method of ceria-carbonate based composite electrolytes for low-temperature SOFC fuel cells, Int. J. Hydrogen Energy 38(36) (2013) 16532-16538.
DOI: 10.1016/j.ijhydene.2013.05.136
Google Scholar
[14]
M. Ahmadrezaei, S.A.M. Ali, A. Muchtar, C.Y. Tan, M.R. Somalu, Thermal Expansion Behavior, Ceramics. -Silikaty. 58(1) (2014) 46–49.
Google Scholar
[15]
M. Tatko, Mosiałek., M. Dudek, P. Nowak, A. Kędra, E. Bielańska, Solid State Ionics 27 (2015) 103–108.
DOI: 10.1016/j.ssi.2014.10.011
Google Scholar
[16]
H. Seon Hong, S. Lee, C. Sunyong Lee., Characterization of (Ni–Cu)/YSZ cermet composites fabricated using high-energy ball-milling, effect of Cu concentration on the composite performance, Ceram. Int. 41(4) (2015) 6122-61.
DOI: 10.1016/j.ceramint.2014.12.158
Google Scholar