Diversification Studies on Samarium Strontium Cobaltite Regarding Thermal & Structural Properties as Based Composite Cathode of SOFC

Article Preview

Abstract:

In this study, samarium strontium cobaltite, Sm0.5Sr0.5CoO3−δ (SSC) and samarium doped ceria, Sm0.2 Ce0.8O1.9 (SDC) carbonate or (SDCC) was used as the new composite cathode powder materials. This composite cathode powder was prepared via high energy ball milling (HEBM) technique for LTSOFC application. Various weight percentages of SDCC ranging from 50 wt.% to 70 wt.% was chosen to be added with SSC powder. The prepared samples of SSC–CE55, SSC-CE64 and SSC-CE73 composite cathode powders were characterized by using TGA, XRD , FTIR in order to investigate their physical structural, morphological and chemical compatibility. Result shows that this new composite cathode powders obtained good thermal stability, chemical compatibility and exhibit no trace of dissimilar phase from both SSC and SDCC. The existence of carbonates layer in the SSC-SDCC composite cathodes powder has been verified by analysis of the FTIR spectra.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

162-166

Citation:

Online since:

March 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Mahato, A. Banerjee, A. Gupta, S. Omar and K. Balani, Progress in material selection for solid oxide fuel cell technology: A review. Prog. Mater. Sci. 72 (2015) 141–337.

DOI: 10.1016/j.pmatsci.2015.01.001

Google Scholar

[2] I. Hasson, An investigation of two ceramic electron conductors for use in solid oxide fuel cell anodes, Master's Theses. (2011)  Paper 22.

Google Scholar

[3] H. Lee, I. Park, J. Park, G. Lee, Effects of dual porosity honeycomb structure in SSC e SDC composite cathode for SOFCs. International Journal of Hydrogen Energy, 40(35) (2015) 1–5.

DOI: 10.1016/j.ijhydene.2015.05.043

Google Scholar

[4] H. Lv, B.Y. Zhao, Y.J. Wu, G. Sun, G. Chen, K.A. Hu, Effect of B-site doping on Sm0. 5Sr0. 5MxCo1-xO3−δ - properties for IT-SOFC cathode material (M = Fe, Mn). Mater. Res. Bull. 42(12) (2007) 1999–(2012).

DOI: 10.1016/j.materresbull.2007.02.007

Google Scholar

[5] C.L. Chang, C.S. Hsu, J.B. Huang, P.H. Hsu, B.H. Hwang Preparation and characterization of SOFC cathodes made of SSC nanofibers. J. Alloy. Compd. 620 (2015) 233–239.

DOI: 10.1016/j.jallcom.2014.09.131

Google Scholar

[6] X. Xi, X. Chen, G. Hou, N. Xu, Q. Zhang, Z. Tao, Fabrication and evaluation of Sm0. 5Sr0. 5CoO3−δ impregnated PrBaCo2O5+δ composite cathode for proton conducting SOFCs. Ceram. Int. 40(8) (2014) 13753–13756.

DOI: 10.1016/j.ceramint.2014.05.082

Google Scholar

[7] A.J. Jacobson, Materials for solid oxide fuel cells. Chem. Mater. 22(3) (2010)660-674.

Google Scholar

[8] A.T. Duong, D.R. Mumm, On the interaction of SSC and LSGM in composite SOFC electrodes, J. Power. Sources. 241 (2013) 281–287.

DOI: 10.1016/j.jpowsour.2013.04.046

Google Scholar

[9] S.A.M. Ali, A. Muchtar, A. Bakar Sulong, N. Muhamad, E. Herianto Majlan, Influence of sintering temperature on the power density of samarium-doped-ceria carbonate electrolyte composites for low-temperature solid oxide fuel cells. Ceram. Int. 39(5) (2013).

DOI: 10.1016/j.ceramint.2013.01.002

Google Scholar

[10] H.A. Rahman, A. Muchtar, N. Muhamad, H. Abdullah, Structure and thermal properties of La0. 6Sr0. 4Co0. 2Fe0. 8O3−δ–SDC carbonate composite cathodes for intermediate- to low-temperature solid oxide fuel cells, Ceram. Int. 38(2) (2012)1571-1576.

DOI: 10.1016/j.ceramint.2011.09.043

Google Scholar

[11] J. Huang, F. Xie, C. Wang and Z. Mao, Development of solid oxide fuel cell materials for intermediate-to-low temperature operation. International Journal of Hydrogen Energy, 37(1) (2012) 877–883.

DOI: 10.1016/j.ijhydene.2011.04.030

Google Scholar

[12] H. Seon Hong, S. Lee, C.S. Lee, Characterization of (Ni–Cu)/YSZ cermet composites fabricated using high-energy ball-milling: effect of Cu concentration on the composite performance, Ceram. Int. 41(4) (2015) 6122-6126.

DOI: 10.1016/j.ceramint.2014.12.158

Google Scholar

[13] Y. Jing, J. Patakangas, P.D. Lund, B. Zhu, An improved synthesis method of ceria-carbonate based composite electrolytes for low-temperature SOFC fuel cells, Int. J. Hydrogen Energy 38(36) (2013) 16532-16538.

DOI: 10.1016/j.ijhydene.2013.05.136

Google Scholar

[14] M. Ahmadrezaei, S.A.M. Ali, A. Muchtar, C.Y. Tan, M.R. Somalu, Thermal Expansion Behavior, Ceramics. -Silikaty. 58(1) (2014) 46–49.

Google Scholar

[15] M. Tatko, Mosiałek., M. Dudek, P. Nowak, A. Kędra, E. Bielańska, Solid State Ionics 27 (2015) 103–108.

DOI: 10.1016/j.ssi.2014.10.011

Google Scholar

[16] H. Seon Hong, S. Lee, C. Sunyong Lee., Characterization of (Ni–Cu)/YSZ cermet composites fabricated using high-energy ball-milling, effect of Cu concentration on the composite performance, Ceram. Int. 41(4) (2015) 6122-61.

DOI: 10.1016/j.ceramint.2014.12.158

Google Scholar