Effect of Sintering Temperature on Structure and Dielectric Properties of Lead Free K0.5Na0.5NbO3 Prepared via Hot Isostatic Pressing

Article Preview

Abstract:

In this research, alkaline niobate known as K0.5Na0.5NbO3 (KNN) lead-free piezoelectric ceramic was synthesis by solid state reaction method which pressing at different sintering temperatures (1000 °C and 1080 °C) prepared via hot isostatic pressing (HIP)). The effect of sintering temperature on structure and dielectric properties was studied. The optimum sintering temperature (at 1080 °C for 30 minutes) using hot isostatic pressing (HIP) was successfully increase the density, enlarge the particle grain size in the range of 0.3 µm – 2.5 µm and improves the dielectric properties of K0.5Na0.5NbO3 ceramics. The larger grain size and higher density ceramics body will contribute the good dielectric properties. At room temperature, the excellent relative permittivity and tangent loss recorded at 1 MHz (ɛr = 5517.35 and tan δ = 0.954), respectively for KNN1080HIP sample. The KNN1080HIP sample is also exhibits highest relative density which is 4.485 g/cm3. The ɛr depends upon density and in this work, the density increase as the sintering temperature increase, which resulting the corresponding ɛr value also increases.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

42-46

Citation:

Online since:

March 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Jaffe, W.R. Cook, H. Jaffe, Piezoelectric Ceramic, Academic Press, London and New York, (1971).

Google Scholar

[2] G.H. Haertling, Ferroelectric Ceramics: History and Technology, J. Am. Ceram. Soc. 82(4) (1999) 797–818.

Google Scholar

[3] L. Yi, K. Moon, C.P. Wong, Electronics without lead, Sci. 308 (2005) 1419–1420.

Google Scholar

[4] J. Wang, L. Zheng, B. Yang, Z. Luo, X. Lu, G. Liu, R. Zhang, T. Lv, W. Cao, Domain evolution with electric field and delineation of extrinsic contributions in (K, Na, Li)(Nb, Ta, Sb)O3 single crystal, App. Phys. Lett. 107(7), (2015) 072902-5.

DOI: 10.1063/1.4928756

Google Scholar

[5] J. Hao, Z. Xu, R. Chu, W. Li, J. Du, Effect of (Bi0. 5K0. 5)TiO3 on the electrical properties, thermal and fatigue behavior of (K0. 5Na0. 5)NbO3-based lead-free piezoelectrics, J. Mater. Res. 30(13) (2015) 2018-(2029).

DOI: 10.1557/jmr.2015.169

Google Scholar

[6] J. H. Kim, D.H. Kim, I.T. Seo, J. Hur, J.H. Lee, B.Y. Kim, S. Nahm, Effect of CuO on the ferroelectric and piezoelectric properties of lead-free KNbO3 ceramics, Sens. Actuators, A. 234 (2015) 9-16.

DOI: 10.1016/j.sna.2015.08.015

Google Scholar

[7] K.W. Kwok, T. Lee, S.H. Choy, H.L.W. Chan, Lead-free piezoelectric transducers for microelectronic wire bonding applications in Piezoelectric Ceramics, Sciyo, E Suaste-Gomez, (2010).

DOI: 10.5772/9944

Google Scholar

[8] L. Egerton, D.M. Dillon, Piezoelectric and dielectric properties of ceramics in the system of potassium-sodium niobates, J. Am. Ceram. Soc. 42 (1959) 438-442.

DOI: 10.1111/j.1151-2916.1959.tb12971.x

Google Scholar

[9] X.Y. Sun, J. Chen, R.B. Yu, C. Sun, G.R. Liu, X.R. Xing, L.K. Qiao, BiScO3 Doped (Na0. 5K0. 5)NbO3 Lead–Free Piezoelectric Ceramics, J. Am. Ceram. Soc. 92 (2010) 130-132.

Google Scholar

[10] D.M. Lin, K.W. Kwok, H.L.W. Chan, Piezoelectric and ferroelectric properties of KxNa1-xNbO3 lead-free ceramics with MnO2 and CuO doping, J. Alloys Compd. 461 (2008) 273-278.

DOI: 10.1016/j.jallcom.2007.06.128

Google Scholar

[11] Y. Wang, J. Wu, D. Xiao, W. Wu, B. Zhang, J. Zhu, P. Yu, Z. Wu, High Curie Temperature of (Li, K, Ag) modified (K0. 5Na0. 5)NbO3 Lead Free Piezoelectric Ceramics, J. Alloys Compd. 472(1) (2009) L6-L8.

DOI: 10.1016/j.jallcom.2008.04.065

Google Scholar