Cyclic Oxidation Performance of Si-Aluminide/MCrAlY Coating on Ni-Base GTD-111 Superalloy

Article Preview

Abstract:

A slurry aluminising process was utilised to produce duplex Si-modified aluminide MCrAlY coatings for superalloy GTD-111. MCrAlY coating was applied by means of high velocity oxy-fuel (HVOF) metal spray technique. Cyclic oxidation behaviour of the aluminide/MCrAlY coating were compared with plain MCrAlY coating. Oxidation performance of the coated samples was investigated by exposing samples to 1 h cyclic oxidation at 1100 °C. Oxidation test results demonstrate the Si-aluminide/MCrAlY coating exhibited much better oxidation resistance than the the uncoated superalloy due to the superior oxidation resistance of the alumina-silica scale at 1100 °C.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

159-164

Citation:

Online since:

March 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.W. Lee, Y.C. Kuo, Cyclic oxidation behaviour of a cobalt aluminide coating on Co-base superalloy AMS 5608Title, Surf. Coat. Technol. 200 (2005) 1225.

DOI: 10.1016/j.surfcoat.2005.07.082

Google Scholar

[2] K. Zhang, Q.M. Wang, C. Sun, F.H. Wang, Preparation and oxidation behaviour of NiCrAlYSi coating on a cobalt-base superalloy K40S, Corros. Sci. 50 (2008) 1707-1715.

DOI: 10.1016/j.corsci.2008.01.033

Google Scholar

[3] X. Ren, F. Wang, High-temperature oxidation and hot-corrosion behaviour of a NiCrAlY coating with and without aluminizing, Surf. Coat. Technol. 201 (2006) 30-37.

DOI: 10.1016/j.surfcoat.2005.10.042

Google Scholar

[4] D. Toma, W. Brandl, U. Köster, The Characteristics of Alumina Scales Formed on HVOF-Sprayed MCrAlY Coatings, Oxid. of Metals 53, (1999) 125-137.

DOI: 10.1016/s0257-8972(98)00613-6

Google Scholar

[5] B. M. Warnes, Improved aluminide MCrAlX coating systems for super alloys using CVD low activity aluminising, Surf. Coat. Technol. 163-64 (2003) 106-111.

DOI: 10.1016/s0257-8972(02)00602-3

Google Scholar

[6] J.R. Nicholls, N.J. Simms, W. Chan, H.E. Evans, Smart overlay coatings- concept and practice, Surf. Coat. Technol. 149 (2002) 236.

DOI: 10.1016/s0257-8972(01)01499-2

Google Scholar

[7] W. Brandl, H.J. Grabke, D. Toma, J. Kruger, The oxidation behaviour of sprayed MCrAIY coatings, Surf. Coat. Technol. 86 (1996) 41-47.

DOI: 10.1016/s0257-8972(96)03039-3

Google Scholar

[8] K. Shirvani, S. Mastali, A. Rashidghamat, H. Abdollahpour, The effect of silicon on thermal shock performance of aluminide-thermal barrier coatings, Corros. Sci. 75 (2013) 142-147.

DOI: 10.1016/j.corsci.2013.05.025

Google Scholar

[9] A. Firouzi, K. Shirvani, The structure and high temperature corrosion performance of medium-thickness aluminide coatings on nickel-based superalloy GTD-111, Corros. Sci. 52 (2010) 3579-3585.

DOI: 10.1016/j.corsci.2010.06.026

Google Scholar

[10] K. Shirvani, M. Saremi, A. Nishikata, T. Tsuru, Electrochemical study on hot corrosion of Si-modified aluminide coated In-738LC in Na2SO4-20 wt. % NaCl melt at 750 °C, Corros. Sci. 45 (2003) 1011-1021.

DOI: 10.1016/s0010-938x(02)00127-0

Google Scholar

[11] A.S. Khanna, Introduction to high temperature oxidation and corrosion, ASM International, Materials Park, Ohio, USA, (2002).

Google Scholar

[12] K. Shirvani, M. Saremi, A. Nishikata, T. Tsuru, The effect of silicon on cyclic oxidation behaviour of aluminide coatings on superalloy In-738LC, Mater. Sci. Forum 461 (2004) 335-339.

DOI: 10.4028/www.scientific.net/msf.461-464.335

Google Scholar