Deformation and Failure of Ultrafine-Grained Cu at Subambient Temperature

Article Preview

Abstract:

The ultrafine-grained copper was obtained by 12 passes of equal-channel angular pressing method. The uniaxial tensile tests at room temperature and the subambient temperature of 77 K show that the yield stress increases from the value of 128 MPa to the value of 138 MPa, respectively. In addition, the lowering the test temperature tends to the increase of the deformation before the failure. The fractographic analysis shows the transcrystalline ductile failure for all samples. Due to the high plasticity of nanostructured copper no influence of the nanoporosity on the failure process was observed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

249-253

Citation:

Online since:

March 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.Z. Valiev, T.G. Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement, Prog. Mater. Sci. 51 (2006) 881–981.

DOI: 10.1016/j.pmatsci.2006.02.003

Google Scholar

[2] J. Horky, G. Khatibi, B. Weiss, M.J. Zehetbauer, Role of structural parameters of ultra-fine grained Cu for its fatigue and crack growth behaviour, J. Alloys and Comp. 509S (2011) 5323–5327.

DOI: 10.1016/j.jallcom.2011.01.088

Google Scholar

[3] C. Xu, Q. Wang, M. Zheng, J. Li, M. Huang, Q. Jia, J. Zhu, L. Kunz, M. Buksa, Fatigue behavior and damage characteristic of ultra-fione grain low-purity copper processed by equal-channel angular pressing (ECAP), Mat. Sci. Eng. A 475 (2008).

DOI: 10.1016/j.msea.2007.04.074

Google Scholar

[4] I. Saxl, A. Kalousová, L. Ilucová, V. Sklenička, Grain and subgrain boundaries in ultrafine-grained materials, Materials characterization 60 (2009) 1163–1167.

DOI: 10.1016/j.matchar.2009.03.010

Google Scholar

[5] L. Kommel, I. Hussainova, O. Volobueva, Microstructure and properties development of copper during severe plastic deformation, Materials and Design 28 (2007) 2121–2128.

DOI: 10.1016/j.matdes.2006.05.021

Google Scholar

[6] V.I. Betekhtin, E.D. Tabachnikova, A.G. Kadomtsev, M.V. Narykova, R. Lapovok, Effect of Counterpressure during Equal-Channel Angular Pressing on Nanoporosity Formation in Ultrafine-Grained Copper, Techn. Phys. Lett. 37 (2011) 767–768.

DOI: 10.1134/s1063785011080189

Google Scholar

[7] J. Ribbe, G. Schmitz, H. Rösner, R. Lapovok, Y. Estrin, G. Wilde, S.V. Divinski, Effect of back pressure during equal-channel angular pressing on deformation-induced porosity in copper, Scripta Mater. 68 (2013) 925–928.

DOI: 10.1016/j.scriptamat.2013.02.034

Google Scholar

[8] E.D. Tabachnikova, A.V. Podolskiy, V.Z. Bengus, S.N. Smirnov, M.I. Bidylo, H. Li, P.K. Liaw, H. Choo, K. Csach, J. Miskuf, Mechanical properties of nanocrystalline Ni-20%Fe alloy at temperatures from 300 to 4. 2 K, Mat. Sci. Eng. A 503 (2009).

DOI: 10.1016/j.msea.2008.02.052

Google Scholar

[9] Y.G. Kim, B. Hwang, S. Lee, C.W. Lee, D.H. Shin, Dynamic deformation and fracture behavior of ultra-fine-grained pure copper fabricated by equal-channel angular pressing, Mat. Sci. Eng. A 504 (2009) 163–168.

DOI: 10.1016/j.msea.2008.10.043

Google Scholar

[10] V. Karel, Specification of the principal nations in microfractography, Kovove Materialy – Metallic Materials 27 (1989) 551–569.

Google Scholar