[1]
H. Watanabe, Y. Sasakura, N. Ikeo, T. Mukai, Effect of deformation twins on damping capacity in extruded pure magnesium, Journal of Alloys and Compounds 626 (2015) 60-64.
DOI: 10.1016/j.jallcom.2014.11.143
Google Scholar
[2]
C.Z. Wu, S.C. Chen, Y.H. Shih, J.M. Hung, C.C. Lin, L.H. Lin, K.L. Ou, Development of the novel ferrous-based stainless steel for biomedical applications, Part I: High-temperature microstructure, mechanical properties and damping behavior, J. Mech. Behav. Biomed. Mater. 4 (2011).
DOI: 10.1016/j.jmbbm.2011.02.007
Google Scholar
[3]
Z. Dresslerová, P. Palček, M. Uhríčik, Influence of homogenization annealing on internal damping depending on the vibration amplitude measured on specimens AZ31 and AZ91, Manufacturing Technology 15 (2015) 526-530.
DOI: 10.21062/ujep/x.2015/a/1213-2489/mt/15/4/526
Google Scholar
[4]
G.D. Fan, M.Y. Zheng, X.S. Hu, K. Wu, W.M. Gan, H.G. Brokmeier, Internal friction and microplastic deformation behavior of pure magnesium, Materials Science & Engineering A 561 (2013) 100-108.
DOI: 10.1016/j.msea.2012.10.083
Google Scholar
[5]
A. Puškár, Internal Friction of Materials, Cambridge International Science Publishing, Cambrigde, (2001).
Google Scholar
[6]
R. González-Martínez, J. Goeken, D. Letzig, J. Timmerberg, K. Steinhoff, Influence of heat treatment on damping behaviour of the magnesium wrought alloy AZ61, Acta Metallurgica Sinica 20 (2007) 235-240.
DOI: 10.1016/s1006-7191(07)60033-7
Google Scholar
[7]
K. Sugimoto, K. Matsui, T. Okamoto, K. Kishitake, Effect of Crystal Orientation on Amplitude-Dependent Damping in Magnesium, Trans JIM 16 (1975) 647-655.
DOI: 10.2320/matertrans1960.16.647
Google Scholar
[8]
J. Göken, J. Swiostek, D. Letzig, K.U. Kainer, Damping Measurements of the Magnesium Wrought Alloys AZ31, AZ61 and AZ80 after Indirect and Hydrostatic Extrusion, Mater. Sci. Forum 482 (2005) 387-390.
DOI: 10.4028/www.scientific.net/msf.482.387
Google Scholar
[9]
R. Schaller, G. Fantozzi, G. Gremaud, Mechanical Spectroscopy Q-1 2001 with Applications to Materials Science, Trans Tech Publications, Switzerland, (2001).
Google Scholar
[10]
M. Uhríčik, P. Palček, A. Soviarová, P. Snopiński, Change of Internal Friction on Aluminium Alloy with 10. 1 % Mg Dependence on the Temperature, Manufacturing Technology 14 (2014) 467-470.
DOI: 10.21062/ujep/x.2014/a/1213-2489/mt/14/3/467
Google Scholar
[11]
Z. Dresslerová, P. Palček, Temperature Dependence of the Internal Friction Measured at Different Excitation Voltages, Manufacturing Technology 14 (2014) 287-290.
DOI: 10.21062/ujep/x.2014/a/1213-2489/mt/14/3/287
Google Scholar
[12]
Z. Dresslerová, P. Palček. Internal Damping depending on the vibration amplitude measured on specimens AZ31 and AZ91 in as cast state and after homogenization annealing, Advanced manufacturing and repairing technologies in vehicle industry: 32th International Colloquium, Czech Republic, Svojanov (2015).
DOI: 10.21062/ujep/x.2015/a/1213-2489/mt/15/4/526
Google Scholar
[13]
A.V. Granato, K. Lücke, Application of dislocation theory to internal friction phenomena at high frequencies, Journal of Applied Physics 27 (1956) 789-805.
DOI: 10.1063/1.1722485
Google Scholar
[14]
T.S. KÊ, Anomalous internal friction peaks as function of strain amplitude, Journal de Physique Colloques 46 (1985) 267-275.
DOI: 10.1051/jphyscol:19851060
Google Scholar
[15]
T.S. KÊ, Low frequency internal-friction peaks as a function of strain amplitude in cold-worked dilute aluminium alloys, Journal de Physique Colloques 42 (1981) 307-312.
DOI: 10.1051/jphyscol:1981545
Google Scholar