[1]
Y. Haizhi, An Overview of the Development of Al-Si-Alloy Based Material for Engine Applications, Journal of Materials Engineering and Performance 12 (2003) 288 - 297.
DOI: 10.1361/105994903770343132
Google Scholar
[2]
S. Seifeddine, The influence of Fe on the microstructure and mechanical properties of cast Al-Si alloys Literature review - Vilmer project,. Jönköping University, Sweden, (2007).
Google Scholar
[3]
S. Seifeddine, et al., The influence of cooling rate and manganese confer on the b-Al5FeSi phase formation and mechanical properties of Al-Si-based alloys, Materials Science and Engineering A 490 (2008) 385-390.
DOI: 10.1016/j.msea.2008.01.056
Google Scholar
[4]
E. Tillová, et al., Evolution of the Fe-rich phases in recycled AlSi9Cu3 cast alloy during solution treatment, Communications - Scientific Letters of the University of Žilina 12 (2010) 95-101.
DOI: 10.26552/com.c.2010.4.95-101
Google Scholar
[5]
F. Grosselle, Doe applied to microstructural and mechanical properties of Al-Si-Cu-Mg casting alloys for automotive applications, Materials Science and Engineering A 527 (2010) 3536 – 3545.
DOI: 10.1016/j.msea.2010.02.029
Google Scholar
[6]
E. Sjölander, et al., The heat treatment of Al–Si–Cu–Mg casting alloys, Journal of Materials Processing Technology 210 (2010) 1249 – 1259.
DOI: 10.1016/j.jmatprotec.2010.03.020
Google Scholar
[7]
F. Paray, et al., Microstructure - mechanical property relationships in A356 alloy. Part I: Microstructure - Cast Metals 7 (1994) 29-40.
DOI: 10.1080/09534962.1994.11819161
Google Scholar
[8]
M. Abdulwahab Studies of the Mechanical Properties of Age-hardened Al-Si-Fe-Mn Alloy. - Australian Journal of Basic and Applied Sciences 2 (2008) 839-843.
Google Scholar
[9]
H. N. Girisha, et al., Influence of Ageing Heat Temperature and Magnesium on Wear and Corrosion Characteristics of aluminium Copper alloy, International Journal of Engineering Research and Technology 2 (2013) 1702–1706.
Google Scholar
[10]
S. K. Shaha, et al., Ageing characteristics and high-temperature tensile properties of Al-Si-Cu-Mg alloys with micro-additions of Cr, Ti, V and Zr, Materials Science and Engineering A 652 (2016) 353–364.
DOI: 10.1016/j.msea.2015.11.049
Google Scholar
[11]
M. Uhríčik, et al., Change of Internal Friction on Aluminium Alloy with 10, 1 % Mg Dependence on the Temperature, Manufacturing Technology 14 (2014) 467–470.
DOI: 10.21062/ujep/x.2014/a/1213-2489/mt/14/3/467
Google Scholar
[12]
M. Uhríčik, et al., Change of internal friction on aluminium alloy EN AC 51200 depending on temperature, Archiwum inzynierii produkcji – Production engineering archives 6 (2015) 17-20.
DOI: 10.30657/pea.2015.06.05
Google Scholar
[13]
P. Pucher, et al., Mechanical properties and casting characteristics of the secondary aluminium alloy AlSi9Cu3(Fe) (A226), The Minerals, Metals and Materials Society, Syuplemental Proceedings: Materials Fabrication, Properties, Characterization, and Modeling 2 (2011).
DOI: 10.1002/9781118062142.ch30
Google Scholar
[14]
L.A. Dobrzański, et al., Microstructure and mechanical properties of AC AlSi9CuX alloys. Journal of Achievements in Materials and Manufacturing Engineering – JAMME 24 (2007) 51-54.
Google Scholar
[15]
M.J. Boileau, et al., The effect of solidification time and heat treatment on the fatigue properties of a cast 319 aluminium alloy, Metallurgical and Materials Transactions A 34A (2003) 1807-1820.
DOI: 10.1007/s11661-003-0147-4
Google Scholar
[16]
K. Boonjubut, et al., Study of factors affecting artificial aging of 6061 aluminium alloy by factorial design, Review of Integrative Business and Economics Research 3 (NRRU) (2011).
Google Scholar
[17]
Information on http: /www. krdiecasting. com/pdf/Sect3. pdf.
Google Scholar
[18]
Information on http: /www. honsel. com/uploads/media/Handbuch_Gusswerkstoffe. pdf.
Google Scholar