Fatigue of Low Carbon Alloy Steel (JIS S45C) and a New Method of Fracture Surface Analysis

Article Preview

Abstract:

In this study, we observed cracks and fatigue surface of low carbon alloy steel (JIS, S45C)) in order to investigate the material structure and fatigue fracture surface. After fatigue crack growth tests of CT specimens, three-dimensional surface roughness of the fracture surface was studied using a laser confocal microscope (LCM). An image analysis method of Homology theory was applied to the LCM’s data. The Betti numbers, b1 were calculated at four points on the fracture surfaces in order to study the effect of asperity heights on the b1 values.Based on these analyses, we found the relation between the structure and fatigue cracks from the viewpoint of Homology.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

181-185

Citation:

Online since:

March 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Nakane, K. Mizobe, E. C. Santos and K. Kida, The Betti number of prior austenite structure of repeated quenching bearing steels (JIS, SUJ2), Applied Mechanics and Materials, Vol. 307, pp.409-414. (2013).

DOI: 10.4028/www.scientific.net/amr.1082.191

Google Scholar

[2] K. Nakane, K. Mizobe, E. C. Santos and K. Kida, The Quantization of the structure of fisheyes via homology method, Applied Mechanics and Materials, Vol. 372, pp.273-276. (2013).

DOI: 10.4028/www.scientific.net/amm.307.409

Google Scholar

[3] K. Nakane, K. Kida, T. Honda, K. Mizobe and E. C. Santos, Influence of repeated quenching on bearing steel martensitic structure investigated by homology, Applied Mechanics and Materials, Vol. 372, pp.270-272. (2013).

DOI: 10.4028/www.scientific.net/amm.372.270

Google Scholar

[4] K. Nakane, K. Kida and K. Mizobe, Homoogy analysis of austenite grain size of SAE52100 bearing steel processed by cyclic heat treatment, Applied Mechanics and Materials, Vol. 813, pp.116-119. (2013).

DOI: 10.4028/www.scientific.net/amr.813.116

Google Scholar

[5] K. Nakane, E. C. Santos, T. Honda, K. Mizobe and K. Kida, Homology analysis of structure of high carbon bearing steel: effect of repeated quenching on prior austenite grain size, Materials Research Innovations, Vol. 18 (Supplement 1), pp.33-37. (2014).

DOI: 10.1179/1432891713z.000000000353

Google Scholar

[6] K. Nakane, Y. Tsuchihashi and N. Matsuura, A simple mathematical model utilizing topological invariants for automatic detection of tumor areas in digital tissue images, Diagn Pathol. Vol. 8 (Suppl 1), S27. (2013).

DOI: 10.1186/1746-1596-8-s1-s27

Google Scholar

[7] K. Kida, K. Mizobe, R. Arai and K. Nakane, The Betti number of prior austenite grain of repeated quenching bearing steels (JIS, SUJ2), Advanced Materials Research, Vol. 1082, pp.191-196. (2015).

DOI: 10.4028/www.scientific.net/amr.1082.191

Google Scholar

[8] M. Ishida, K. Kida, K. Mizobe and K. Nakane, The Betti number of fatigue fracture surfaces of low carbon steel (JIS, S45C), Advanced Materials Research, Vol. 1102, pp.59-63. (2015).

DOI: 10.4028/www.scientific.net/amr.1102.59

Google Scholar

[9] J. E. Srawley, Wide range stress intensity factor expressions for ASTM E 399 standard fracture toughness specimens, Int. Jour. of Fracture, 12 (1976).

DOI: 10.1007/bf00032844

Google Scholar

[10] J. C. Newman, Jr., Stress Analysis of the Compact Specimen Including the Effects of Pin Loading, Fracture Analysis, ASTM STP 560, American Society for Testing and Materials, pp.105-121. (2013).

DOI: 10.1520/stp33136s

Google Scholar