Luminescent Properties and Thermometry of CaWO4:Nd3+ in Near Infrared Region

Article Preview

Abstract:

CaWO4: xNd3+ (x = 0.005, 0.008, 0.01, 0.015, 0.02, 0.025 0.03) powders have been synthesized by high-temperature solid state reaction. The results of the XRD indicate that Nd3+ ions have entered into the crystal lattice in all compounds successfully. The reflectance spectra show that the matrix has strong absorption. The emission spectra, excitation spectra and different lifetimes between CaWO4 and CaWO4: 0.5% Nd3+ indicate that efficient energy transfer occurs from WO42- cluster to Nd3+ ions. On the basis of the above work, the dependence of fluorescent spectra on temperature was studied. It turned out that, not only the excitation spectra appeared red shift with increasing temperature, but also the dependence of the near infrared fluorescent intensity on temperature is fitting with a linear function. It might be served as a promising phosphor for temperature sensor device.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

156-160

Citation:

Online since:

March 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Brübach, C. Pflitsch, A. Dreizler, B. Atakan, On surface temperature measurements with thermographic phosphors: A review, Prog. Energ. Combust. 39 (2013) 37-60.

DOI: 10.1016/j.pecs.2012.06.001

Google Scholar

[2] F. Vetrone, R. Naccache, A. Zamarrón, A. J. de la Fuente, F. Sanz-Rodríguez, L. M. Maestro, E. M. Rodriguez, D. Jaque, J. G. Solé, J. A. Capobianco, Temperature sensing using fluorescent nanothermometers, ACS Nano, 4 (2010) 3254-3258.

DOI: 10.1021/nn100244a

Google Scholar

[3] L. H. Fischer, G. S. Harms, O. S. Wolfbeis, Upconverting nanoparticles for nanoscale thermometry, Angew. Chem. Int. Ed. 50 (2011) 4546-4551.

DOI: 10.1002/anie.201006835

Google Scholar

[4] S. A. Wade, S. F. Collins, G. W. Baxter, Fluorescence intensity ratio technique for optical fiber point temperature sensing, J. Appl. Phys. 94 (2003) 4743-4756.

DOI: 10.1063/1.1606526

Google Scholar

[5] S. A. Wade, S. F. Collins, G. W. Baxter, Fluorescence intensity ration technique for optical fiber point temperature sensing, Appl. Phys. Rev. 94 (2003) 4743-4757.

DOI: 10.1063/1.1606526

Google Scholar

[6] S. Zheng, W. Chen, D. Tan, J. Zhou, Q. Guo, W. Jiang, C. Xu, X. Liu, J. Qiu, Lanthanide-doped NaGdF4 core-shell nano-particles for non-contact self-referencing temperature sensors, Nanoscale, 6 (2014) 5675-5679.

DOI: 10.1039/c4nr00432a

Google Scholar

[7] X. Wang, O. S. Wolfbeis, R. J. Meier, Luminescent probes and sensors for temperature, Chem. Soc. Rev. 42 (2013) 7834.

DOI: 10.1039/c3cs60102a

Google Scholar

[8] D. Chen, S. Liu, Z. Wan, Y. Chen, A highly sensitive upconverting nano-glass-ceramic-based optical thermometer, J. Alloy. Compd. 672 (2016) 380-385.

DOI: 10.1016/j.jallcom.2016.02.138

Google Scholar

[9] B. S. Cao, Y. Y. He, Z. Q. Feng, Y. S. Li, B. Dong, Optical temperature sensing behavior of enhanced green upconversion emissions from Er-Mo: Yb2Ti2O7 nanophosphor, Sensor Actuat. B 159 (2011) 8-11.

DOI: 10.1016/j.snb.2011.05.018

Google Scholar

[10] J. Cai, X. Wei, F. Hu, Z. Cao, Y. Chen, C. Duan, M. Yin, Up-conversion luminescence and optical thermometry properties of transparent glass ceramics containing CaF2: Yb3+/Er3+ nanocrystals, Ceram. Int. 2016 http: /dx. doi. org/10. 1016/j. ceramint. 2016. 06. 002.

DOI: 10.1016/j.ceramint.2016.06.002

Google Scholar

[11] F. Huang, Y. Gao, J. Zhou, J. Xua, Y. Wang, Yb3+/Er3+ co-doped CaMoO4: a promising green upconversion phosphor for optical temperature sensing, J. Alloy. Compd. 639 (2015) 325-329.

DOI: 10.1016/j.jallcom.2015.02.228

Google Scholar

[12] Y. Zhou, B. Yan, Lanthanides post-functionalized nanocrystalline metal-organic frameworks for tunable white-light emission and orthogonal multi-readout thermometry, Nanoscale, 7 (2015) 4063-4069.

DOI: 10.1039/c4nr06873d

Google Scholar

[13] X. Lian, D. Zhao, Y. Cui, G. Qian, A near infrared luminescent metal-organic frameworks for temperature sensing in physiological range, Chem. Comm. 2016, DOI: 10. 1039/C5CC07532G.

Google Scholar

[14] D. Zhao, J. Zhang, D. Yue, X. Lian, Y. Cui, Y. Yang, G. Qian, A highly sensitive near-infrared luminescent metal-organic framework thermometer in physiological range, Chem. Comm. 2016, DOI: 10. 10139/C6CC02471H.

DOI: 10.1039/c6cc02471h

Google Scholar

[15] Y. Su, L. Li. G. Li, Synthesis and optimum luminescence of CaWO4-based red phosphors with codoping of Eu3+ and Na+, Chem. Mater. 20 (2008) 6060-6067.

DOI: 10.1021/cm8014435

Google Scholar

[16] X. Cheng, K. Yang, J. Wang, L. Yang, X. Cheng, Up-converted luminescence and optical temperature sensing behavior of Yb3+/Er3+ codoped CaWO4 material, Opt. Mat. 58 (2016) 449-453.

DOI: 10.1016/j.optmat.2016.06.029

Google Scholar

[17] W. Xu, H. Zhao H, Y. Li, L. Zheng, Z. Zhang, Optical temperature sensing through the upconversion luminescence from Ho3+/Yb3+ codoped CaWO4, Sensor Actuat. B, 188 (2013) 1096-1100.

DOI: 10.1016/j.snb.2013.07.094

Google Scholar

[18] A. Golubović, R. Gajić, Z. Dohčević-Mitrović, S. Nikolić, Nd induced changes in IR spectra of CaWO4 single crystals, J. Alloy. Compd. 415 (2006) 16-22.

DOI: 10.1016/j.jallcom.2005.07.056

Google Scholar