Growth of Single Crystalline TiO2 Nanorods as a Photoanode for Dye-Sensitized Solar Cell

Article Preview

Abstract:

Single crystal TiO2 nanorod (TNR), aligned vertically and packed with the length up to 10 μm on the surface of FTO glass, are prepared hydrothermal method, without any surfactant materials. By adjusting reaction time and concentration of titanium precursor solution, the morphology of TNRs is controlled and result in 20-50 nm of diameters, 4-10 μm length and the inter-distance between TNRs are approximately 3.8 nm. Morphology-controlled TNR arrays are applied to a photoanode in photovoltaic cell. photo-conversion efficiency of Packed TNRs with 10 μm length reached 4.2%.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

144-150

Citation:

Online since:

March 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. P. Han, E. J. Lee, Y. W. Han, T. H. Lee, D. K. Moon, J. Ind. Eng. Chem. 36 (2016) 44-48.

Google Scholar

[2] B. Oregan, M. Grätzel, Nature, 353 (1991) 737-740.

Google Scholar

[3] M. Liang, J. Chen, Chem. Soc. Rev. 2013, 42, 3453-3488.

Google Scholar

[4] M. Sánchez Carballo, M. Urbani, A. Kumar Chandiran, D. González-Rodríguez, P. Vázquez, M. Grätzel, M. K. Nazeeruddin, T. Torres, Dalton Trans. 43 (2014) 15085-15091.

DOI: 10.1039/c4dt01357c

Google Scholar

[5] A. Solbrand, H. Lindström, H. Rensmo, A. Hagfeldt, S. E. Lindquist, S. Södergren, J. Phys. Chem. B 101 (1997) 2514-2518.

DOI: 10.1021/jp962819y

Google Scholar

[6] J. van de Lagemaat, N. G. Park, A. J. Frank, J. Phys. Chem. B 104 (2000) 2044-(2052).

Google Scholar

[7] J. Villanueva-Cab, S. -R. Jang, A. F. Halverson, K. Zhu, A. J. Frank, Nano Lett. 14 (2014) 2305-2309.

Google Scholar

[8] A. U. Pawar, C. W. Kim, M. J. Kang, Y. S. Kang, Nano Energy 20 (2016) 156-167.

Google Scholar

[9] L. E. Greene, B. D. Yuhas, M. Law, D. Zitoun, P. D. Yang, Inorg. Chem. 45 (2006) 7535-7543.

DOI: 10.1021/ic0601900

Google Scholar

[10] G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, C. A. Grimes, Nano Lett. 6 (2006) 215-218.

Google Scholar

[11] L. E. Greene, M. Law, B. D. Yuhas, P. D. Yang, J. Phys. Chem. C 111 (2007) 18451-18456.

Google Scholar

[12] K. Zhu, N. R. Neale, A. Miedaner, A. J. Frank, Nano Lett. 7 (2007) 69-74.

Google Scholar

[13] K. S. Leschkies, R. Divakar, J. Basu, E. Enache-Pommer, J. E. Boercker, C. B. Carter, U. R. Kortshagen, D. J. Norris, E. S. Aydil, Nano Lett. 7 (2007) 1793-1798.

DOI: 10.1021/nl070430o

Google Scholar

[14] Z. Wang, S. Ran, B. Liu, D. Chen, G. Shen, Nanoscale 4 (2012) 3350-3358.

Google Scholar

[15] W. Guo, C. Xu, X. Wang, S. Wang, C. Pan, C. Lin, Z. L. Wang, J. Am. Chem. Soc. 134 (2012) 4437-4441.

Google Scholar

[16] H. Yu, J. Pan, Y. Bai, X. Zong, X. Li, L. Wang, Chem. Eur. J. 19 (2013) 13569-13574.

Google Scholar

[17] J. B. Baxter, E. S. Aydil, Appl. Phys. Lett. 86 (2005) 053114.

Google Scholar

[18] M. Law, L. E. Greene, J. C. Johnson, R. Saykally, P. D. Yang, Nat. Mater. 4 (2005) 455-459.

Google Scholar

[19] C. K. Xu, P. Shin, L. L. Cao, D. Gao, J. Phys. Chem. C 114 (2010) 125-129.

Google Scholar

[20] A. B. F. Martinson, J. W. Elam, J. T. Hupp, M. J. Pellin, Nano Lett. 7 (2007) 2183-2187.

Google Scholar

[21] D. He, X. Sheng, J. Yang, L. Chen, K. Zhu, X. Feng, J. Am. Chem. Soc. 136 (2014) 16772-1677.

Google Scholar

[22] G. K. Mor, K. Shankar, M. Paulose, O. K. Varghesen, C. A. Grimes, Nano Lett. 5 (2005) 191-195.

Google Scholar

[23] G. K. Mor, K. Shankar, M. Paulose, O. K. Varghesen, C. A. Grimes, Appl. Phys. Lett. 91 (2007) 152111.

Google Scholar

[24] C. W. Kim, S. P. Suh, M. J. Choi, Y. S. Kang, Y. S. Kang, J. Mater. Chem. A 1 (2013) 11820-11827.

Google Scholar

[25] X. Feng, K. Shankar, O. K. Varghese, M. Paulose, T. J. Latempa, C. A. Grimes, Nano Lett. 8 (2008) 3781-3786.

Google Scholar

[26] B. Liu, E. S. Aydil, J. Am. Chem. Soc. 131 (2009) 3985-3990.

Google Scholar

[27] S. S. Mali, H. Kim, C. S. Shim, P. S. Patil, J. H. Kim, C. K. Hong, Sci. Rep. 3 (2013) 3004.

Google Scholar

[28] Z. Haider, Y. S. Kang, ACS Appl. Mater. Inter. 6 (2014) 10342-10352.

Google Scholar

[29] M. Lv, D. Zheng, M. Ye, J. Xiao, W. Guo, Y. Lai, L. Sun, C. Lin, J. Zuo, Energy Environ. Sci. 6 (2013) 1615-1622.

Google Scholar

[30] H. G. Cha, J. Song, H. S. Kim, W. Shin, K. B. Yoon, Y. S. Kang, Chem. Commun. 47 (2011) 2441-2443.

Google Scholar

[31] C. W. Kim, M. J. Choi, S. Lee, H. Park, B. Moon, Y. S. Kang, Y. S. Kang, J. Phys. Chem. C 119 (2015) 24902-24909.

Google Scholar

[32] J. Li, J. Xu, J. Huang, CrystEngComm 16 (2014) 375-384.

Google Scholar

[33] J. Y. Zheng, T. K. Van, A. U. Pawar, C. W. Kim, Y. S. Kang, RSC Adv. 4 (2014) 18616-18620.

Google Scholar

[34] J. Y. Zheng, G. Song, J. Hong, T. K. Van, A. U. Pawar, D. Y. Kim, C. W. Kim, Z. Haider, Y. S. Kang, Cryst. Growth Des. 14 (2014) 6057-6066.

Google Scholar

[35] A. S. Vuk, R. Jese, B. Orel, G. Drazic, Int. J. Photoenergy 7 (2005) 163-168.

Google Scholar

[36] K. E. Lee, M. A. Gomez, S. Elouatik, G. P. Demopoulos, Langmuir 26 (2010) 9575-9583.

Google Scholar

[37] H. G. Yang, C. H. Sun, S. Z. Qiao, J. Zou, G. Liu, S. C. Smith, H. M. Cheng, G. Q. Lu, Nature 453 (2008) 638-641.

Google Scholar

[38] J. Chen, H. B. Yang, J. Miao, H. Y. Wang, B. Liu, J. Am. Chem. Soc. 136 (2014) 15310-15318.

Google Scholar

[39] T. Fröschl, U. Hörmann, P. Kubiak, G. Kučerová, M. Pfanzelt, C. K. Weiss, R. J. Behm, N. Hüsing, U. Kaiser, K. Landfester, M. Wohlfahrt-Mehrens, Chem. Soc. Rev. 41 (2012) 5313-5360.

DOI: 10.1039/c2cs35013k

Google Scholar