Citric Acid Complex Sol-Gel Method to Prepare Lu2SiO5:Eu Phosphor

Article Preview

Abstract:

The Lu2SiO5 dried gel was prepared by the sol-gel reaction followed by a 24h drying at 90°C.The thermogravimetry–differential scanning calorimetry (TG-DSC) analysis curves of the dried gel demonstrates mass and enthalpy changes as temperature raised.The obtained dried gel was calcined at 900°C,1000°C,1100°Cand1200°C each for 2h to prepare polycrystalline Eu3+-dropped Lu2SiO5 phosphor.The phase composition and crystal structure was identified with an X-ray diffractometer (XRD).The dried gel was crystallized into A-type LSO phase at 1000°C, and transferred to B-type LSO phase when temperature was raised above 1050°C.The obtained LSO grain size is 200-300nm revealed in Field-emission scanning electron microscopy (FE-SEM) images.The photoluminescence spectrum of the obtained 2mol% Eu3+-dropped Lu2SiO5 phosphor showed a broad excitation band around 263nm and a sharp emission peak at 613nm.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

122-126

Citation:

Online since:

March 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Brecher, A. Lempicki, H. Lingertat, S. R. Miller, J. Glodo, and V. K. Sarin. A Ceramic Version of the LSO Scintillator. Transac. Nuc. Sci. 56(2008)1149-1154.

DOI: 10.1109/tns.2007.914368

Google Scholar

[2] W.M. William. Current trends in scintillator detectors and materials. Nuc. Instrum. Met. Phy Res. 487(2002)123-127.

Google Scholar

[3] M.J. Weber. Scintillation: mechanisms and new crystals. Nuc. Instrum. Met. Phy Res. 527(2004): 9-16.

Google Scholar

[4] Y. Takayuki. Study of rare-earth-doped scintillators. Opt. Mater. 35(2013)1997-(2004).

Google Scholar

[5] S.E. Derenzo, M.K. Klintenberg, M.J. Weber. The quest for the ideal inorganic scintillator. Nuc Instrum. Met. Phy Res. 505(2003)111-118.

Google Scholar

[6] C. Dujardin, J.M. Nedelec,C. Mansuya, R. Mahiou . Characterization and scintillation properties of sol–gel derived Lu2SiO5: Ln3+(Ln = Eu , Ce, and Tb) powders. Opt. Mater. 31(2009)1334-1339.

DOI: 10.1016/j.optmat.2008.10.008

Google Scholar

[7] L.H. Qin, S. Lu, D.Z. Ding, G.H. Ren. Color center and radiation center in Lu2SiO5: Ce crystal. Jour. Rare. Ear. 26(2008): 678-685.

DOI: 10.1016/s1002-0721(08)60161-1

Google Scholar

[8] C. Mansuy, J. M. Nedelec, R. Mahiou. A New Sol-Gel Route to Lu2SiO5(LSO) Scintillator: Powders and Thin Films. Chem. Mater. 16(2004)242-248.

DOI: 10.1002/chin.200346012

Google Scholar

[9] Y. Shi, P. Yun, D. Zhou, J.J. Xie. Hydrothermal synthesis of Ce: Lu2SiO5 scintillator powders.J. Rare. Ear. 28(2008)800-808.

DOI: 10.1016/s1002-0721(08)60338-5

Google Scholar

[10] M. Mainas, C. Cannas, A. Musinu, A. Speghini, G. Piccaluga, M. Bettinelli. Nanocrystalline luminescent Eu3+doped Y2SiO5prepared by sol-gel technique. Opt. Mater. 28(2006)1504-1514.

DOI: 10.1016/j.optmat.2005.01.008

Google Scholar

[11] J.K. Lee, D.W. Cooke, R. Groves, B.L. Bennett, E.A. McKigney, J L.G. Jacobsohn. Luminescent properties and reduced dimensional behavior of hydrothermally prepared Y2SiO5: Ce nanophosphors. App. Phy. Let. 89(2007): 103-108.

DOI: 10.1063/1.2183737

Google Scholar

[12] C.F. Yan, J. Xu ,G.J. Zhao, L.H. Zhang. Comparison of cerium-doped Lu2Si2O7 and Lu2SiO5 scintillators. J. Crys. Gro. 281(2006) 411-418.

DOI: 10.1016/j.jcrysgro.2005.04.038

Google Scholar

[13] H. Zhang, J.D. Chen, H. Guo. Electrospinning synthesis and luminescent properties of Lu2O3: Eu3+ nanofibers. J. Rare. Ear. 29(2011)230-239.

DOI: 10.1016/s1002-0721(10)60331-6

Google Scholar

[14] O. Myeongjin, H.J. Kim. Luminescence Properties of a Lu2O3: Eu3+nano-phosphor and radiation hardness measurements with a proton beam.J. Kor. Phy Soc. 61(2012)273-280.

DOI: 10.3938/jkps.61.273

Google Scholar

[15] V.B. Kravchenko, Y.L. Kopylov, N.A. Dulina S.T. Parkhomenko A.S. Tolmachev. Fabbrication and characterization of Eu3+-droped Lu2O3 scintillation ceramics. Opt. Mater. 37(2014)809-820.

DOI: 10.1016/j.optmat.2012.04.020

Google Scholar