Effect of Molding Pressure on Densification of Al2O3/Al Cermet Materials

Article Preview

Abstract:

Cermet materials is a important new engineering materials with the advantages of ceramics and metal materials. The Al2O3/Al cermet materials is prepared via the powder metallurgy method, the effect of sintering technology on properties of Al2O3/Al cermet materials is researched in this paper, which lay the base for preparing the high performance cermet materials. The results are shown through the study, the denstity of cermet is increased with an increasing moliding pressure, the sample density is 2.084g/cm3 as the pressure for 40MPa and the sintering temperature at 600¡æ, the density is higher, that is to say it is highest performance, the distribution of aluminum and alumina is most uniform. When the sintering temperature is higher, howerver, the molding pressure is lower, the lower density of the sample is shown, the aluminum is easier to overflow the surface of the sample.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

100-104

Citation:

Online since:

March 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Tavakol, M. Mahnama, R. Naghdabadi, Shock wave sintering of Al/SiC metal matrix nano-composites: A molecular dynamics study, Comp Mater Sci. 125 (2016) 255-262.

DOI: 10.1016/j.commatsci.2016.08.032

Google Scholar

[2] Z. L. Zhao, L. An, D. M Wu, Wear resistance of cermet WC-20%Co toughened and reinforced with ZrO2(3Y), Trans. Mater. Treat. 33 (2012) 26-30.

Google Scholar

[3] S. Das, S. Datta, A. K. Mukhopadhyay, Al-Al2O3 core-shell composite by microwave induced oxidation of aluminium powder, Mater. Chem. Phys. 122 (2010) 574-581.

DOI: 10.1016/j.matchemphys.2010.03.049

Google Scholar

[4] Y. P. Bai, J. D. Xing, S. Q. Ma, Effect of 4 wt% Cr on microstructure, corrosion resistance and tribological properties of Fe3Al-20 wt. %Al2O3 composites, Mater. Charact. 78 (2013) 69-78.

DOI: 10.1016/j.matchar.2013.01.014

Google Scholar

[5] W.L. Tian, L.H. Qi, C.Q. Su, J. Zhou, Numerical simulation on elastic properties of short-fiber-reinforced metal matrix composites: Effect of fiber orientation, Comp. Struct. 152 (2016) 408-417.

DOI: 10.1016/j.compstruct.2016.05.046

Google Scholar

[6] S. S. Tousi, R. Rad, S. A. Manafi, Effect of volume fraction and particle size of alumina reinforcement on compaction and densification behavior of Al-Al2O3 nanocomposites, Mater. Sci. Eng. A, 528 (2011) 1105-1110.

DOI: 10.1016/j.msea.2010.09.085

Google Scholar

[7] M. Ashida, Z. Horita, Effects of ball milling and high-pressure torsion for improving mechanical properties of Al-Al2O3 nanocomposites, J. Mater. Sci. 47 (2012) 7821-7827.

DOI: 10.1007/s10853-012-6679-5

Google Scholar

[8] M. Rahimian, N. Parvin, N. Ehsani, The effect of production parameters on microstructure and wear resistance of powder metallurgy Al-Al2O3 composite, Mater. Design. 32 (2011) 1031-1038.

DOI: 10.1016/j.matdes.2010.07.016

Google Scholar

[9] M. Zheng, Y. T. Zhao, D. B. Chen, Research on fabrication and microstructure of in-situ nano-Al2O3 particles reinforced aluminum matrix composite. J. Func. Mater. 42 (2011) 748-754.

Google Scholar

[10] B. Dikici, M. Gavgali, The effect of sintering time on synthesis of in situ submicron a-Al2O3 particles by the exothermic reactions of CuO particles in molten pure Al, J. Alloy. Compd. 551 (2013) 101-107.

DOI: 10.1016/j.jallcom.2012.10.018

Google Scholar

[11] S. Pournaderi, S. Mahdavi, F. Akhlaghi, Fabrication of Al/Al2O3 composites by in-situ powder metallurgy (IPM), Powder Tech. 229 (2012) 276-284.

DOI: 10.1016/j.powtec.2012.06.056

Google Scholar

[12] H. R. Derakhshandeh, Effect of ECAP and extrusion on particle distribution in Al-nano-Al2O3 composite, Bull. Mater. Sci. 38 (2015) 1205-1212.

DOI: 10.1007/s12034-015-1001-1

Google Scholar

[13] R. Bejjani, M. Balazinski, H. Attia, Chip formation and microstructure evolution in the adiabatic shear band when machining titanium metal matrix composites, Inter. J. Mach. Tool. Manuf., 109 (2016) 137-146.

DOI: 10.1016/j.ijmachtools.2016.08.001

Google Scholar