Effect of Auxiliary on the Dispersibility of ZrB2 Powder in the Liquid

Article Preview

Abstract:

The composite ZrB2 powder coated A12O3-Y2O3 prepared by co-precipitation method were densified via the spark plasma sintering (SPS) and then researched the oxidation resistance at high temperature. ZrB2 powder must have the better dispersibility during the coating processing for obtaining the better coating effect. Effect of dispersant on the dispersibility of ZrB2 powder in the liquid is researched in this paper, the results show ZrB2 powder have the better dispersibility as the dispersant for PMAA and the content for 2vol%, which lay foundation for synthsising the better coating effect coated A12O3-Y2O3-ZrB2 composite powder.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

105-109

Citation:

Online since:

March 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Zhou, Y.H. Fan, P. Wang, J. Chen, The indentation thermal shock behavior of laminated ZrB2-SiC ceramics with strong interfaces, Ceram. Int. 42 (2016) 17489-17496.

DOI: 10.1016/j.ceramint.2016.08.056

Google Scholar

[2] J. Watts, G. Hilmas, W.G. Fahrenholtz, Measurement of thermal residual stresses in ZrB2-SiC composites, J. Eur. Ceram. Soc. 31 (2011) 1811-1820.

DOI: 10.1016/j.jeurceramsoc.2011.03.024

Google Scholar

[3] Q.L. Guo, S.J. Luo, J.Z. Gan, J.G. Li, L.M. Zhang, Effect of ball milled Zr/Al/ZrB2 composite powders on microstructure and toughening of ZrB2-SiC/Zr-Al-C composite ceramics sintered by spark plasma sintering, Mater. Sci. Eng. A 644 (2015) 96-104.

DOI: 10.1016/j.msea.2015.07.010

Google Scholar

[4] D.X. Li, Z.H. Yang, D.C. Jia, C. Hu, B. Liang, Y. Zhou, Preparation, microstructures, mechanical properties and oxidation resistance of SiBCN/ZrB2-ZrN ceramics by reactive hot pressing, J. Eur. Ceram. Soc. 35 (2015) 4399-4410.

DOI: 10.1016/j.jeurceramsoc.2015.08.010

Google Scholar

[5] Y.H. Huang, D.L. Jiang, J.X. Zhang, Sintering kinetics of YAG ceramics, J. Rare Earth 32(2014) 416-422.

Google Scholar

[6] M.H. Xu, J.G. Song, D.M. Du, F. Wang, The Mechanism of Controlling Pore Microstructure for YAG Porous Ceramics, Key Eng. Mater. 680 (2016) 216-219.

DOI: 10.4028/www.scientific.net/kem.680.216

Google Scholar

[7] R.R. Wang, Y.C. Wang, Z.Y. Fu, Phase evolution of YAG powders obtained by gel combustion combined with field-assisted rapid synthesis technique, Ceram. Int. 41(2015) 7289-7295.

DOI: 10.1016/j.ceramint.2015.02.009

Google Scholar

[8] S.A. Kumar, J. Senthilselvan, Co-precipitation synthesis and spectroscopic studies of YAG and Yb: YAG nanopowder for opto-electronic applications, Trans. Indian Inst. Metal. 68 (2015) 153-159.

DOI: 10.1007/s12666-015-0539-3

Google Scholar

[9] J.G. Song, D.M. Du, F. Wang, M.H. Xu, Synthesis Mechanism of ZrB2@A12O3-Y2O3 Composite Powders with Core-shell Microstructure, Key Eng. Mater. 680 (2016) 133-136.

Google Scholar

[10] N. Joshi, K. Rawat, R.K. Pujala, Ionic liquid induced surface exclusion and anomalous first-order phase transition in Laponite dispersions, J. Molecul. Liquid. 207(2015) 177-184.

DOI: 10.1016/j.molliq.2015.03.034

Google Scholar

[11] T. Kang, I. Jang, S.G. Oh, Surface modification of silica nanoparticles using phenyl trimethoxy silane and their dispersion stability in N-methyl-2-pyrrolidone, Colloid. Surf. A. 501 (2016) 24-31.

DOI: 10.1016/j.colsurfa.2016.04.060

Google Scholar