Magnetic and Photochemical Properties of Cu Doped Hematite Nanocrystal

Article Preview

Abstract:

In this report, the magnetic and photochemical properties of Cu doped hematite nanocrystal was investigated intensively. The Cu doped hematite nanocrystals were prepared by hydrothermal method, changing the molar ratio of Cu precursors. The XRD and XPS techniques are used for revealing crystal and chemical state of Cu doped hematite nanocrystal. Raman spectroscopy was also used for confirming Cu atoms replacing Fe position in Cu doped hematite crystal. The UV-vis and UPS were used for assigning electronic band position for photocatalytic properties. Cu doped hematite showed the enhanced photocatalytic properties within photodegradation of methyl orange. Finally, by checking magnetic hysteresis loops of Cu doped hematites with VSM, it was revealed that the magnetic property of Cu doped hematite nanocrystal was increased after doping Cu into hematite nanocrystal, get the distortion of magnetic sub-lattices.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

136-143

Citation:

Online since:

March 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Wu, P. Yin, X. Zhu, C. OuYang and Y. Xie, The Journal of Physical Chemistry B, 2006, 110, 17806-17812.

Google Scholar

[2] S. Chikazumi, S. Taketomi, M. Ukita, M. Mizukami, H. Miyajima, M. Setogawa and Y. Kurihara, Journal of Magnetism and Magnetic Materials, 1987, 65, 245-251.

DOI: 10.1016/0304-8853(87)90043-6

Google Scholar

[3] R. N. Grass, E. K. Athanassiou and W. J. Stark, Angewandte Chemie International Edition, 2007, 46, 4909-4912.

Google Scholar

[4] K. Sivula, F. Le Formal and M. Grätzel, ChemSusChem, 2011, 4, 432-449.

Google Scholar

[5] D. W. Elliott and W. -x. Zhang, Environmental Science & Technology, 2001, 35, 4922-4926.

Google Scholar

[6] S. Mornet, S. Vasseur, F. Grasset, P. Veverka, G. Goglio, A. Demourgues, J. Portier, E. Pollert and E. Duguet, Progress in Solid State Chemistry, 2006, 34, 237-247.

DOI: 10.1016/j.progsolidstchem.2005.11.010

Google Scholar

[7] S. U. M. Khan and J. Akikusa, The Journal of Physical Chemistry B, 1999, 103, 7184-7189.

Google Scholar

[8] F. L. Souza, K. P. Lopes, E. Longo and E. R. Leite, Physical Chemistry Chemical Physics, 2009, 11, 1215-1219.

Google Scholar

[9] D. K. Zhong, J. Sun, H. Inumaru and D. R. Gamelin, Journal of the American Chemical Society, 2009, 131, 6086-6087.

Google Scholar

[10] K. Kamada, T. Hyodo and Y. Shimizu, The Journal of Physical Chemistry C, 2010, 114, 3707-3711.

Google Scholar

[11] D. Schroeer and R. C. Nininger, Physical Review Letters, 1967, 19, 632-634.

Google Scholar

[12] R. C. Nininger and D. Schroeer, Journal of Physics and Chemistry of Solids, 1978, 39, 137-144.

Google Scholar

[13] N. Amin and S. Arajs, Physical Review B, 1987, 35, 4810-4811.

Google Scholar

[14] P. Zhang, A. Kleiman-Shwarsctein, Y. -S. Hu, J. Lefton, S. Sharma, A. J. Forman and E. McFarland, Energy & Environmental Science, 2011, 4, 1020-1028.

DOI: 10.1039/c0ee00656d

Google Scholar

[15] H. G. Cha, H. S. Noh, M. J. Kang and Y. S. Kang, New Journal of Chemistry, 2013, 37, 4004-4009.

Google Scholar

[16] C. A. Barrero, J. Arpe, E. Sileo, L. C. Sánchez, R. Zysler and C. Saragovi, Physica B: Condensed Matter, 2004, 354, 27-34.

DOI: 10.1016/j.physb.2004.09.013

Google Scholar

[17] X. Y. Meng, G. W. Qin, S. Li, X. H. Wen, Y. P. Ren, W. L. Pei and L. Zuo, Applied Physics Letters, 2011, 98, 112104.

Google Scholar

[18] H. G. Cha, J. Song, H. S. Kim, W. Shin, K. B. Yoon and Y. S. Kang, Chemical Communications, 2011, 47, 2441-2443.

Google Scholar

[19] D. Varshney and A. Yogi, Journal of Advanced Ceramics, 2014, 3, 269-277.

Google Scholar

[20] A. Zoppi, C. Lofrumento, E. M. Castellucci, C. Dejoie and P. Sciau, Journal of Raman Spectroscopy, 2006, 37, 1131-1138.

DOI: 10.1002/jrs.1597

Google Scholar

[21] I. Chamritski and G. Burns, The Journal of Physical Chemistry B, 2005, 109, 4965-4968.

Google Scholar

[22] M. V. Abrashev, A. P. Litvinchuk, M. N. Iliev, R. L. Meng, V. N. Popov, V. G. Ivanov, R. A. Chakalov and C. Thomsen, Physical Review B, 1999, 59, 4146-4153.

Google Scholar

[23] I. Cesar, K. Sivula, A. Kay, R. Zboril and M. Grätzel, The Journal of Physical Chemistry C, 2009, 113, 772-782.

Google Scholar

[24] A. Duret and M. Grätzel, The Journal of Physical Chemistry B, 2005, 109, 17184-17191.

Google Scholar

[25] W. -J. Chun, A. Ishikawa, H. Fujisawa, T. Takata, J. N. Kondo, M. Hara, M. Kawai, Y. Matsumoto and K. Domen, The Journal of Physical Chemistry B, 2003, 107, 1798-1803.

Google Scholar