[1]
Ladewig A, Schlick G, Fisser M, et al. Influence of the shielding gas flow on the removal of process by-products in the selective laser melting process[J]. Additive Manufacturing, 2016, 10: 1-9.
DOI: 10.1016/j.addma.2016.01.004
Google Scholar
[2]
Wang D, Song C, Yang Y, et al. Research on the redesign of precision tools and their manufacturing process based on selective laser melting (SLM)[J]. Rapid Prototyping Journal, 2016, 22(1): 104-114.
DOI: 10.1108/rpj-02-2014-0021
Google Scholar
[3]
Olakanmi E O, Cochrane R F, Dalgarno K W. A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: Processing, microstructure, and properties[J]. Progress in Materials Science, 2015, 74: 401-477.
DOI: 10.1016/j.pmatsci.2015.03.002
Google Scholar
[4]
Dong P, Chen J. Current Status of Selective Laser Melting for Aerospace Applications Abroad[J]. Aerospace Manufacturing Technology, (2014).
Google Scholar
[5]
Casavola C, Campanelli S L, Pappalettere C. Preliminary investigation on the residual strain distribution due to the Selective Laser Melting Process[J]. Journal of Strain Analysis for Engineering Design, 2009, 44(1): 93-104.
DOI: 10.1243/03093247jsa464
Google Scholar
[6]
Jerrard, Eveleigh P G. Selective laser melting of advanced metal alloys for aerospace applications[J]. University of Exeter, (2011).
Google Scholar
[7]
Flege C, Vogt F, Höges S, et al. Development and characterization of a coronary polylactic acid stent prototype generated by selective laser melting. [J]. Journal of Materials Science Materials in Medicine, 2013, 24(1): 241-55.
DOI: 10.1007/s10856-012-4779-z
Google Scholar
[8]
Z Hu, H Zhu, H Zhang, et al. Experimental investigation on selective laser melting of 17-4PH stainless steel[J]. Optics & Laser Technology, 2017, 87: 17-25.
DOI: 10.1016/j.optlastec.2016.07.012
Google Scholar
[9]
Chen G, Zhang Y, Xu D K, et al. Low Cycle Fatigue and Creep-Fatigue Interaction Behavior of Nickel-Base Superalloy GH4169 at Elevated Temperature of 650°C[J]. Materials Science & Engineering A, 2016, 655: 175-182.
DOI: 10.1016/j.msea.2015.12.096
Google Scholar
[10]
CA Griffiths, J Howarth, GD Almeida-Rowbotham, et al. A design of experiments approach for the optimisation of energy and waste during the production of parts manufactured by 3D printing[J]. Journal of Cleaner Production, 2016: 74–85.
DOI: 10.1016/j.jclepro.2016.07.182
Google Scholar
[11]
Li R, Liu J, Shi Y, et al. 316L Stainless Steel with Gradient Porosity Fabricated by Selective Laser Melting[J]. Journal of Materials Engineering & Performance, 2010, 19(5): 666-671.
DOI: 10.1007/s11665-009-9535-2
Google Scholar
[12]
Yadroitsev I, Thivillon L, Bertrand P, et al. Strategy of manufacturing components with designed internal structure by selective laser melting of metallic powder[J]. Applied Surface Science, 2007, 254(4): 980-983.
DOI: 10.1016/j.apsusc.2007.08.046
Google Scholar
[13]
Jinhui L, Ruidi L, Wenxian Z, et al. Study on formation of surface and microstructure of stainless steel part produced by selective laser melting[J]. Materials Science & Technology, 2013, volume 26(26): 1259-1264.
DOI: 10.1179/174328409x441300
Google Scholar