An Experimental Verification of the Applicability of Steels S235 and DD11 for Aseismic Structural Provisions

Article Preview

Abstract:

Aseismic design of modern structures imposes a new requirement on structural engineers. Structural systems should withstand even very huge earthquakes. This goal cannot be achieved by standard design methods applying a linear elastic approach. An advanced aseismic design applies energy dissipating anti-seismic devices. During seismic event, these devices are exposed to a large plastic strain. The code EN 15129 is the standard on anti-seismic devices applicable in Europe. Mentioned standard defines a special material requirement imposed on devices working as energy absorbers. Material verification is possible only experimentally. In compliance with the instructions contained in the code EN15129, several cyclic tests of the materials S235 and DD11 have been used. Evaluation of the previous research and the current test results have proved that structural steel S235 is not applicable to the anti-seismic devices. As an alternative, steel DD11 has been suggested for this application. The test results have shown that the steel DD11 is applicable in specified range of target strain amplitudes.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

218-222

Citation:

Online since:

March 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] EN 1998-1. Design of Structures for Earthquake Resistance: European standard. Brussels: Comite Europeen de Normalisation (CEN), 2004. ISBN: 0580458725.

Google Scholar

[2] EN 15129. Antiseismic Devices: European standard. Brussels: Comite Europeen de Normalisation (CEN), 2009. ISBN: 9780580550843.

Google Scholar

[3] K. Hjelstad, E. Popov, Seismic Behaviour of Active Beam Links in Eccentrically Braced Frames. Earthquake Engineering Research Center, 1986, 169 pp, UCB/EERC-86/01.

Google Scholar

[4] P. Dusicka, M. Itani, G. Buckle, Cyclic Response of Plate Steels under Large Inelastic Strains, Journal of Constructional Steel Research 63(2) (2007) 156-164, DOI: 10. 1016/j. jcsr. 2006. 03. 006.

DOI: 10.1016/j.jcsr.2006.03.006

Google Scholar

[5] J. Protivinsky, M. Krejsa, Material Study of a Short Seismic Link in a Dissipative Structure of a Vertical Industrial Boiler, Applied Mechanics and Materials 623 (2014) 10-17, DOI: 10. 4028/www. scientific. net/AMM. 623. 10.

DOI: 10.4028/www.scientific.net/amm.623.10

Google Scholar

[6] J. Protivinsky, M. Krejsa, Making Use of the Principle of Energy Dissipation in the Seismic Design of a Steel Structure of a Steam Boiler, Transaction of the VSB – Technical University of Ostrava, Civil Engineering Series 12(2) (2012).

DOI: 10.2478/v10160-012-0028-0

Google Scholar

[7] A. Zsarnoczay, V. Budahazy, L. Vigh, L. Dunai, Cyclic Hardening Criteria in EN 15129 for Steel Dissipative Braces, Journal of Constructional Steel Research 83 (2013) 1-9, DOI: 10. 1016/j. jcsr. 2012. 12. 013.

DOI: 10.1016/j.jcsr.2012.12.013

Google Scholar

[8] J. Vican, P. Janik, Experimental and Numerical Analysis of Beam-Column Resistance, Procedia Engineering 91 (2014) 280-285, DOI: 10. 1016/j. proeng. 2014. 12. 060. ISSN 18777058.

DOI: 10.1016/j.proeng.2014.12.060

Google Scholar

[9] P. Dusicka, R. Iwai, Development of Linked Column Frame System for Seismic Lateral Loads. Structural Engineering Research Frontiers. Reston, VA: American Society of Civil Engineers, 2007, (Vol. 1): 1-13. DOI: 10. 1061/40944(249)63. ISBN 978-0-7844-0944-2.

DOI: 10.1061/40944(249)63

Google Scholar

[10] A. Strauss, Z. Kala, K. Bergmeister, S. Hoffmann, D. Novak, The object of this contribution is the comparison of the statistical characteristics of yield strength, ultimate strength and ductility of Austrian and Czech steels, Stahlbau 75(1) (2006).

Google Scholar

[11] N. Jendzelovsky, L. Balaz, Analysis of cylindrical tanks under the seismic load, Key Engineering Materials 691 (2016) 285-296, DOI: 10. 4028/www. scientific. net/KEM. 691. 285.

DOI: 10.4028/www.scientific.net/kem.691.285

Google Scholar

[12] P. Kotes, M. Farbak, P. Kotula, M. Brodnan, A. Cavojcova, Using CFRP lamellas for strengthening of dynamically loaded beams, Procedia Engineering 65 (2013) 302-310, DOI: 10. 1016/j. proeng. 2013. 09. 047.

DOI: 10.1016/j.proeng.2013.09.047

Google Scholar

[13] K. Kotrasova, I. Grajciar, E. Kormanikova, Dynamic time-history response of cylindrical tank considering fluid - Structure interaction due to earthquake, Applied Mechanics and Materials 617 (2014).

DOI: 10.4028/www.scientific.net/amm.617.66

Google Scholar

[14] J. Kralik, Risk-based safety analysis of the seismic resistance of the NPP structures, in: G. Lombaert, G. Muller, G. De Roeck, G. Degrande (Eds. ), Proceedings of the 8th International Conference on Structural Dynamics - EURODYN 2011, University of Southampton, Institute of Sound Vibration and Research, 2011, pp.292-299.

Google Scholar

[15] I. Major, M. Major, Modeling of wave propagation in the ADINA software for simple elastic structures, Advanced Materials Research 1020 (2014) 171-176, DOI: 10. 4028/www. scientific. net/AMR. 1020. 171.

DOI: 10.4028/www.scientific.net/amr.1020.171

Google Scholar

[16] V. Salajka, P. Hradil, J. Kala, Assess of the nuclear power plant structures residual life and earthquake resistance, Applied Mechanics and Materials 284-287 (2013) 1247-1250, DOI: 10. 4028/www. scientific. net/AMM. 284-287. 1247.

DOI: 10.4028/www.scientific.net/amm.284-287.1247

Google Scholar

[17] J. Navratil, Structural analysis of bridges, legitimate conservatism and obsolete theories, Concrete Engineering International 8(1) (2004) 17-19.

Google Scholar