[1]
S. Shimizu, N. Abe, A. Iguchi, H. Sato. Synthesis of pyridine base: general methods and recent advances in gas phase synthesis over ZSM-5 zeolite. Catal. Surv. Jpn. 2 (1998) 71-78.
Google Scholar
[2]
K. R. S. K. Reddy, I. Sreedhar, K. V. Raghavan. Interrelationship of process parameters in vapor phase pyridine synthesis. Appl. Catal. A: General. 339 (2008) 15-20.
DOI: 10.1016/j.apcata.2008.01.004
Google Scholar
[3]
L. J. Xu, Q. Yao, Z. Han, Y. Zhang, Y. Fu. Producing pyridines via thermocatalytic conversion and ammonization of waste polylactic acid over zeolites. ACS Sustainable Chem. Eng. 4 (2016) 1115-1122.
DOI: 10.1021/acssuschemeng.5b01178
Google Scholar
[4]
L. J. Xu, Z. Han, Q. Yao, Q. X. Guo. Towards the sustainable production of pyridines via thermo-catalytic conversion of glycerol with ammonia over zeolite catalysts. Green Chem. 17 (2015) 2426-2435.
DOI: 10.1039/c4gc02235a
Google Scholar
[5]
Y. C. Zhang, X. Yan, Niu B. Q Niu, J. Q. Zhao. A study on the conversion of glycerol to pyridine bases over Cu/HZSM-5 catalysts. Green Chem. 18 (2016) 3139-3151.
DOI: 10.1039/c6gc00038j
Google Scholar
[6]
L. J. Xu, Q. Yao, Y. Zhang, Y. Fu. Producing pyridines via thermo-catalytic conversion and ammonization of glycerol over nano-sized HZSM-5. RSC Adv. 6 (2016) 86034-86042.
DOI: 10.1039/c6ra18603c
Google Scholar
[7]
C. W. Luo, C. Huang, A. Li, W. J. Yi, X. Y. Feng, Z. J. Xu, Z. S. Chao. Influence of reaction parameters on the catalytic performance of alkaline-treated zeolites in the novel synthesis of pyridine bases from glycerol and ammonia. Ind. Eng. Chem. Res. 55 (2016).
DOI: 10.1021/ie504934n
Google Scholar
[8]
C. W. Luo, X. Y. Feng, Z. S. Chao. Microwave-accelerated direct synthesis of 3-picoline from glycerol through a liquid phase reaction pathway. New J. Chem. 40 (2016) 8863-8871.
DOI: 10.1039/c5nj02735g
Google Scholar
[9]
C. W. Luo, A. Li, J. F. An, D. D. Feng. X. Zhang, Z. S. Chao. The synthesis of pyridine and 3-picoline from gas-phase acrolein diethyl acetal with ammonia over ZnO/HZSM-5. Chem. Eng. J. 273 (2015) 7-18.
DOI: 10.1016/j.cej.2015.01.017
Google Scholar
[10]
J. C. Groen, L. A. A. Peffer, J. A. Moulijn, J. Pérez-Ramírez. Mesoporosity development in ZSM-5 zeolite upon optimized desilication conditions in alkaline medium. Colloids Surf. A: Physicochem. Eng. Asp. 241 (2004) 53-58.
DOI: 10.1016/j.colsurfa.2004.04.012
Google Scholar
[11]
J. C. Groen, J. A. Moulijn, J. Pérez-Ramírez. Alkaline post treatment of MFI zeolites. From accelerated screening to scale-up. Ind. Eng. Chem. Res. 46 (2007) 4193-4201.
DOI: 10.1021/ie061146v
Google Scholar
[12]
F. Jin, Cui Y. G. Cui, Y. D. Li. Effect of alkaline and atom-planting treatment on the catalytic performance of ZSM-5 catalyst in pyridine and picolines synthesis. Appl. Catal. A: General. 350 (2008) 71-78.
DOI: 10.1016/j.apcata.2008.07.041
Google Scholar
[13]
C. W. Luo, Chao Z. S. Chao. Unsaturated aldehydes: a novel route for the synthesis of pyridine and 3-picoline. RSC Adv. 5 (2015) 54090-54101.
DOI: 10.1039/c4ra17098a
Google Scholar
[14]
C. W. Luo, X. Y. Feng, W. Liu, Z. S. Chao. Deactivation and regeneration on the ZSM-5-based catalyst for the synthesis of pyridine and 3-picoline. Microporous Mesoporous Mater. 235 (2016) 261-269.
DOI: 10.1016/j.micromeso.2016.03.008
Google Scholar
[15]
Y. T. Kim, K. D. Jung, E. D. Park. Gas-phase dehydration of glycerol over ZSM-5 catalysts. Microporous Mesoporous Mater. 131 (2010) 28-36.
DOI: 10.1016/j.micromeso.2009.11.037
Google Scholar
[16]
L. Q. Shen, H. B. Yin, A. L. Wang, Y. H. Feng, Y. T. Shen, Z. N. Wu, T. S. Jiang. Liquid phase dehydration of glycerol to acrolein catalyzed by silicotungstic, phosphotungstic, and phosphomolybdic acids. Chem. Eng. J. 180 (2012) 277-283.
DOI: 10.1016/j.cej.2011.11.058
Google Scholar