Effect of Si/Al Ratios on the Structure and Catalytic Properties of Alkaline-Treated ZSM-5 Catalysts

Article Preview

Abstract:

A series of hierarchical HZSM-5 catalysts were synthesized by alkaline (denoted as HZSM-5-At) and/or alkaline-acid (denoted as HZSM-5-At-acid) treatments, and they as catalyst pairs were employed for the synthesis of glycerol and ammonia toward pyridine bases in a series-connected two-stage reactor. The characterization was analysed by means of N2-physorption and NH3-TPD techniques. The catalytic evaluation showed that the lower Si/Al ratio (Si/Al = 25 before treatment) in catalyst pairs (HZSM-5-At + ZnO/HZSM-5-At-acid) possessed the highest total yield of pyridine bases among all the catalyst pairs, but the suitable Si/Al ratio in alkaline-treated ZSM-5 (Si/Al = 38 before treatment) in the first stage of reactor and ZnO/HZSM-5-At-acid (Si/Al = 25 before treatment) in the second stage of reactor had the stronger stability relative to other catalyst pairs. The characterization revealed that the amount of acid sites play a vital role in the formation of pyridine bases whereas the appearance of mesoporous structure and the declined concentration of acid sites were main reasons for promoting the stability.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

141-147

Citation:

Online since:

March 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Shimizu, N. Abe, A. Iguchi, H. Sato. Synthesis of pyridine base: general methods and recent advances in gas phase synthesis over ZSM-5 zeolite. Catal. Surv. Jpn. 2 (1998) 71-78.

Google Scholar

[2] K. R. S. K. Reddy, I. Sreedhar, K. V. Raghavan. Interrelationship of process parameters in vapor phase pyridine synthesis. Appl. Catal. A: General. 339 (2008) 15-20.

DOI: 10.1016/j.apcata.2008.01.004

Google Scholar

[3] L. J. Xu, Q. Yao, Z. Han, Y. Zhang, Y. Fu. Producing pyridines via thermocatalytic conversion and ammonization of waste polylactic acid over zeolites. ACS Sustainable Chem. Eng. 4 (2016) 1115-1122.

DOI: 10.1021/acssuschemeng.5b01178

Google Scholar

[4] L. J. Xu, Z. Han, Q. Yao, Q. X. Guo. Towards the sustainable production of pyridines via thermo-catalytic conversion of glycerol with ammonia over zeolite catalysts. Green Chem. 17 (2015) 2426-2435.

DOI: 10.1039/c4gc02235a

Google Scholar

[5] Y. C. Zhang, X. Yan, Niu B. Q Niu, J. Q. Zhao. A study on the conversion of glycerol to pyridine bases over Cu/HZSM-5 catalysts. Green Chem. 18 (2016) 3139-3151.

DOI: 10.1039/c6gc00038j

Google Scholar

[6] L. J. Xu, Q. Yao, Y. Zhang, Y. Fu. Producing pyridines via thermo-catalytic conversion and ammonization of glycerol over nano-sized HZSM-5. RSC Adv. 6 (2016) 86034-86042.

DOI: 10.1039/c6ra18603c

Google Scholar

[7] C. W. Luo, C. Huang, A. Li, W. J. Yi, X. Y. Feng, Z. J. Xu, Z. S. Chao. Influence of reaction parameters on the catalytic performance of alkaline-treated zeolites in the novel synthesis of pyridine bases from glycerol and ammonia. Ind. Eng. Chem. Res. 55 (2016).

DOI: 10.1021/ie504934n

Google Scholar

[8] C. W. Luo, X. Y. Feng, Z. S. Chao. Microwave-accelerated direct synthesis of 3-picoline from glycerol through a liquid phase reaction pathway. New J. Chem. 40 (2016) 8863-8871.

DOI: 10.1039/c5nj02735g

Google Scholar

[9] C. W. Luo, A. Li, J. F. An, D. D. Feng. X. Zhang, Z. S. Chao. The synthesis of pyridine and 3-picoline from gas-phase acrolein diethyl acetal with ammonia over ZnO/HZSM-5. Chem. Eng. J. 273 (2015) 7-18.

DOI: 10.1016/j.cej.2015.01.017

Google Scholar

[10] J. C. Groen, L. A. A. Peffer, J. A. Moulijn, J. Pérez-Ramírez. Mesoporosity development in ZSM-5 zeolite upon optimized desilication conditions in alkaline medium. Colloids Surf. A: Physicochem. Eng. Asp. 241 (2004) 53-58.

DOI: 10.1016/j.colsurfa.2004.04.012

Google Scholar

[11] J. C. Groen, J. A. Moulijn, J. Pérez-Ramírez. Alkaline post treatment of MFI zeolites. From accelerated screening to scale-up. Ind. Eng. Chem. Res. 46 (2007) 4193-4201.

DOI: 10.1021/ie061146v

Google Scholar

[12] F. Jin, Cui Y. G. Cui, Y. D. Li. Effect of alkaline and atom-planting treatment on the catalytic performance of ZSM-5 catalyst in pyridine and picolines synthesis. Appl. Catal. A: General. 350 (2008) 71-78.

DOI: 10.1016/j.apcata.2008.07.041

Google Scholar

[13] C. W. Luo, Chao Z. S. Chao. Unsaturated aldehydes: a novel route for the synthesis of pyridine and 3-picoline. RSC Adv. 5 (2015) 54090-54101.

DOI: 10.1039/c4ra17098a

Google Scholar

[14] C. W. Luo, X. Y. Feng, W. Liu, Z. S. Chao. Deactivation and regeneration on the ZSM-5-based catalyst for the synthesis of pyridine and 3-picoline. Microporous Mesoporous Mater. 235 (2016) 261-269.

DOI: 10.1016/j.micromeso.2016.03.008

Google Scholar

[15] Y. T. Kim, K. D. Jung, E. D. Park. Gas-phase dehydration of glycerol over ZSM-5 catalysts. Microporous Mesoporous Mater. 131 (2010) 28-36.

DOI: 10.1016/j.micromeso.2009.11.037

Google Scholar

[16] L. Q. Shen, H. B. Yin, A. L. Wang, Y. H. Feng, Y. T. Shen, Z. N. Wu, T. S. Jiang. Liquid phase dehydration of glycerol to acrolein catalyzed by silicotungstic, phosphotungstic, and phosphomolybdic acids. Chem. Eng. J. 180 (2012) 277-283.

DOI: 10.1016/j.cej.2011.11.058

Google Scholar