[1]
A.A. Dubov. Method of metal magnetic memory and inspection instruments. Training handbook. Document No: V-1347-06.
Google Scholar
[2]
Z.D. Wang, K. Yao, B. Deng, K.Q. Ding. Theoretical studies of metal magnetic memory technique on magnetic flux leakage signals. NDT&E International. 43 (2010) 354–359.
DOI: 10.1016/j.ndteint.2009.12.006
Google Scholar
[3]
C.L. Shi, S.Y. Dong, B.S. Xu, P. He. Metal magnetic memory effect caused by static tension load in a case hardened steel. Journal of Magnetism and Magnetic Materials. 322 (2010) 413–416.
DOI: 10.1016/j.jmmm.2009.09.066
Google Scholar
[4]
Serope Kalpakjian, Steven R. Schmid. Manufacturing Processes for Engineering Materials. Pearson Education. (2008) 98-103.
Google Scholar
[5]
Maciej Roskosz. Metal magnetic memory testing of welded joints of ferritic and austenitic steels. NDT&E International. 44 (2011) 305-310.
DOI: 10.1016/j.ndteint.2011.01.008
Google Scholar
[6]
Kocańda Stanisław. Fatigue Failure of Metals. Alphen aan den Rijn Sijthoff & Noordhoff International Publishers. (1978).
DOI: 10.1002/zamm.19790591219
Google Scholar
[7]
S.J. Fang, J. H. Hemann, J. D. Achenbach. Experimental and Analytical Investigation of Dynamic Stress concentrations at a Circular Hole. J. Appl. Mech. 41 (1974) 417-422.
DOI: 10.1115/1.3423303
Google Scholar
[8]
J. W. Dally, W. F. Halbleib. Dynamic Stress concentrations at Circular Holes in Struts. Journal of Mechanical Engineering Science March. 7-1 (1965) 23-27.
DOI: 10.1243/jmes_jour_1965_007_006_02
Google Scholar
[9]
Richard Shea. Dynamic Stress concentration factors. Experimental Mechanics. 4-1 20-24.
Google Scholar
[10]
Pao Y H, Mow C-C. Diffraction of Elastic Waves and Dynamic Stress Concentrations [M]. New York: Russak, Crane, (1973).
Google Scholar
[11]
Xue Hui, Song JinIiang, Jia Youquan. The influence of load waveform on dynamic stress concentration factors under Impact Load. Journal of Machine Design. 11 (l995) 23-26.
Google Scholar
[12]
Xue Hui, Song JinIiang, Jia Youquan. Dynamic stress concentration factors due to incidence of triangle and step waves. Journal of mechanical strength. 120-2 (1998) 87-90.
Google Scholar
[13]
H. Ilker Yelbay, Ibrahim Cam, C. Hakan G ¨ur. Non-destructive determination of residual stress state in steel weldments by Magnetic Barkhausen Noise technique. NDT&E International. 43 (2010) 29–33.
DOI: 10.1016/j.ndteint.2009.08.003
Google Scholar
[14]
Ren jilin, et al. The method of metal magnetic memory[M]. Beijing: China Electric Power Press, (2000).
Google Scholar
[15]
A.A. Dubov. A study of metal properties using the method of magnetic memory. Metal Science and Heat Treatment. 39 (1997) 9-10.
Google Scholar
[16]
XU Zhangsui, XU Ying, WANG Jianbin, et al. The principle and application of crack leakagemagnetic quantitative test[M]. Beijing: National Defense Industry Press, (2005).
Google Scholar
[17]
Shi Changliang, Dong Shiyun, Xu Binshi, He Peng. Stress concentration degree affects spontaneous magnetic signals of ferromagnetic steel under dynamic tension load. NDT&E International. 43 (2010) 8–12.
DOI: 10.1016/j.ndteint.2009.08.002
Google Scholar
[18]
Marcia Maru, Linilson Padovese. Evaluating Plastic Deformation by the Magnetic Barkhausen Noise. ECNDT. 2006 - Tu. 1. 6. 4.
Google Scholar
[19]
M. Blaow, J.T. Evans, B.A. Shaw. Magnetic Barkhausen noise: the influence of microstructure and deformation in bending. Acta Materialia. 53 (2005) 279-287.
DOI: 10.1016/j.actamat.2004.09.021
Google Scholar
[20]
Jiles D. Introduction to magnetism and magnetic materials. London; New York: Chapman and Hall. (1991).
Google Scholar