[1]
C. Leyens, Peters M. Titanium and Titanium Alloys. Wiley, (2003).
Google Scholar
[2]
F.H. You, X.W. Yang, J.C. Zhu. Effects of Ultrasonic Impact on Welding Joint of TA15 Titanium Alloy, Heat Treatment of Metals. 35 (2010) 70-72. (In Chinese).
Google Scholar
[3]
Y.L. Qi, J. Deng, Q. Hong. Electron beam welding, laser beam welding and gas tungsten arc welding of titanium sheet, Material Science and Engineering. A280 (2000) 177-181.
DOI: 10.1016/s0921-5093(99)00662-0
Google Scholar
[4]
S.Q. Wang, J.H. Liu, D.L. Chen. Tensile and fatigue properties of electron beam welded dissmilar joints between Ti-6Al-4V and BT9 titanium alloys, Materials Science &Engineering A 584 (2013) 47-56.
DOI: 10.1016/j.msea.2013.07.009
Google Scholar
[5]
P.J. Withers. Residual stress and its role in failure, Reports on Progress in Physics, (2007).
Google Scholar
[6]
H. Fu, X.L. Liu, H. Lu. Relieving residual stress of titanium alloy welded joint, Chin. J. Nonferrous Met. 20 (2010) 713-716. (In Chinese).
Google Scholar
[7]
L. Suominen, M. Khurshid, J. Parantainen. Residual stresses in welded components following post-weld treatment methods, Procedia Engineering. 66 (2013) 181-191.
DOI: 10.1016/j.proeng.2013.12.073
Google Scholar
[8]
H.E. Coules. Contemporary approaches to reducing weld induced residual stress, Mater. Sci. Technol. 29 (2013) 4-18.
Google Scholar
[9]
B.N. Mordyuk, G.I. Prokopenko. Ultrasonic impact peening for the surface properties' management, Journal of Sound and Vibration. 308 (2007) 855-866.
DOI: 10.1016/j.jsv.2007.03.054
Google Scholar
[10]
A. Galtier, E.S. Statnikov. Arcelor, Irsid. The influence of ultrasonic impact treatment on fatigue behavior of welded joints in high-strength steel. Welding Research Abroad. 51 (2005) 17-22.
DOI: 10.1007/bf03266433
Google Scholar
[11]
T. Suzuk, T. Okawa, H. Shimanuki. Effect of ultrasonic impact treatment (UIT) on fatigue strength of welded joints. Advanced Materials Research. 996 (2014) 736-742.
DOI: 10.4028/www.scientific.net/amr.996.736
Google Scholar
[12]
N.S. Rossini, M. Dassisti, K.Y. Benyounis. Methods of measuring residual stresses in components, Mater & Design. 35(2012) 572-588.
DOI: 10.1016/j.matdes.2011.08.022
Google Scholar
[13]
J.P. Nobre, A. Batista. Neutron and X-Ray diffraction residual stress measurements in aluminum alloys MIG welded joints after friction stir processing, Adv. Mater. Res. 996 (2014) 439-444.
DOI: 10.4028/www.scientific.net/amr.996.439
Google Scholar
[14]
A. Bahadur, B.R. Kumar, A.S. Kumar. Development and comparison of residual stress measurement on welds by various methods. Mater. Sci. Technol. 20 (2004) 261-269.
DOI: 10.1179/026708304225012332
Google Scholar
[15]
H. Zhang, S.S. Hu, J.Q. Shen. Effect of laser beam offset on microstructure and mechanical properties of pulsed laser welded BTi-6431S/TA15 dissimilar titanium alloys, Optics&Laser Technology. 74 (2015) 158-166.
DOI: 10.1016/j.optlastec.2015.06.006
Google Scholar
[16]
T. Ma, X.Y. Song, W.J. Ye. Effects of Stress-relief Annealing on the Residual Stress and the Microstructure of TA15 Welded Joint, Materials Science Form. 849 (2016) 281-286.
DOI: 10.4028/www.scientific.net/msf.849.281
Google Scholar