[1]
T. Nakano, K. Hayashi, Y. Umakoshi, Y.L. Chiu, P. Veyssière, Effects of Al concentration and resulting long-period superstructures on the plastic properties at room temperature of Al-rich TiAl single crystals, Philos. Mag. 85 (2005) 2527-2548.
DOI: 10.1080/14786430500079728
Google Scholar
[2]
S. Hata, T. Nakano, N. Kuwano, M. Itakura, S. Matsumura, Y. Umakoshi, Microscopic properties of long-period ordering in Al-rich TiAl alloys, Metall. Mater. Trans. A 39 (2008) 1610-1617.
DOI: 10.1007/s11661-007-9397-x
Google Scholar
[3]
J.C. Schuster, M. Palm, Reassessment of the binary Aluminum-Titanium phase diagram, J. Phase Equilib. Diffus. 27 (2006) 255-277.
DOI: 10.1361/154770306x109809
Google Scholar
[4]
T. Nakano, K. Hagihara, T. Seno, N. Sumida, M. Yamamoto, Y. Umakoshi, Stress anomaly in Al-rich Ti-Al single crystals deformed by the motion of 1/2«110] ordinary dislocations, Philos. Mag. Lett. 78 (1998) 385-391.
DOI: 10.1080/095008398177788
Google Scholar
[5]
T. Nakano, K. Matsumoto, T. Seno, K. Oma, Y. Umakoshi, Effect of chemical ordering on the deformation mode of Al-rich Ti-Al single crystals, Philos. Mag. A 74 (1996) 251-268.
DOI: 10.1080/01418619608239700
Google Scholar
[6]
C. Colinet, A. Pasturel, Structural stability of one-dimensional long-period structures in the TiAl3 compound, J. Phys.: Condens. Matter 14 (2002) 6713-6727.
DOI: 10.1088/0953-8984/14/26/311
Google Scholar
[7]
G. Ghosh, M. Asta, First-principles calculation of structural energetics of Al-TM (TM = Ti, Zr, Hf) intermetallics, Acta Mater. 53 (2005) 3225-3252.
DOI: 10.1016/j.actamat.2005.03.028
Google Scholar
[8]
P.S. Ghosh, A. Arya, U.D. Kulkarni, G.K. Dey, S. Hata, T. Nakano, K. Hagihara, H. Nakashima, Ab-initio study of long-period superstructures and anti-phase boundaries in Al-rich γ-TiAl (L10)-based alloys, Philos. Mag. 94 (2014) 1202-1218.
DOI: 10.1080/14786435.2014.885135
Google Scholar
[9]
A. Raman, K. Schubert, On the constitution of some alloy series related to TiAl3. II. investigations in some T-Al-Si-and T4.. 6-in systems, Z. Metallk. 56 (1965) 44-52.
Google Scholar
[10]
J.C. Schuste, H. Ipser, Phases and phase relations in the partial system TiAl3-TiAl, Z. Metallk. 81 (1990) 389-396.
Google Scholar
[11]
E. Illeková, P. Švec, D. Janičkovič, Influence of the processing on the ordering process in the Al-Ti binary system with composition close to Al3Ti, J. Phys: Conf. Ser. 144 (2009) 012111.
DOI: 10.1088/1742-6596/144/1/012111
Google Scholar
[12]
I. Ohnuma, Y. Fujita, H. Mitsui, K. Ishikawa, R. Kainuma, K. Ishida, Phase equilibria in the Ti-Al binary system, Acta Mater. 48 (2000) 3113-3123.
DOI: 10.1016/s1359-6454(00)00118-x
Google Scholar
[13]
H.Z. Fu, L.P. Yao, J. Fu, Z.F. Hou, Theoretical investigations on the elastic wave propagation and phonon focusing in AlLi crystal, Mater. Chem. Phys. 152 (2015) 34-40.
DOI: 10.1016/j.matchemphys.2014.12.006
Google Scholar
[14]
G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54 (1996) 11169-11186.
DOI: 10.1103/physrevb.54.11169
Google Scholar
[15]
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996) 3865-3868.
DOI: 10.1103/physrevlett.77.3865
Google Scholar
[16]
P.E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50 (1994) 17953-17979.
DOI: 10.1103/physrevb.50.17953
Google Scholar
[17]
T. Tsuchiya, K. Kawamura, Systematics of elasticity: Ab initio study in B1-type alkaline earth oxides, J. Chem. Phys. 114 (2001) 10086-10093.
DOI: 10.1063/1.1371498
Google Scholar
[18]
P. Ravindran, L. Fast, P.A. Korzhavyi, B. Johansson, J. Wills, O. Eriksson, Density functional theory for calculation of elastic properties of orthorhombic crystals: Application to TiSi2, J. Appl. Phys. 84 (1998) 4891-4904.
DOI: 10.1063/1.368733
Google Scholar
[19]
M.J. Peng, Y.H. Duan, Y. Sun, Anisotropic elastic properties and electronic structure of Sr-Pb compounds, Comput. Mater. Sci. 98 (2015) 311-319.
DOI: 10.1016/j.commatsci.2014.10.060
Google Scholar
[20]
S.F. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, Philos. Mag. 45 (1954) 823-843.
DOI: 10.1080/14786440808520496
Google Scholar
[21]
P.Y. Tang, G.H. Huang, Q.L. Xie, J.L. Huang, F. Ning, Elastic anisotropy and phonon focusing for tetragonal crystals: Application to γ-TiAl, Comput. Mater. Sci. 118 (2016) 117-123.
DOI: 10.1016/j.commatsci.2016.03.011
Google Scholar
[22]
A.G. Every, General closed-form expressions for acoustic waves in elastically anisotropic solids, Phys. Rev. B 22 (1980) 1746-1760.
DOI: 10.1103/physrevb.22.1746
Google Scholar
[23]
G.L. Koos, J.P. Wolfe, Piezoelectricity and ballistic heat flow, Phys. Rev. B 29 (1984) 6015-6017.
DOI: 10.1103/physrevb.29.6015
Google Scholar
[24]
Y.J. Wang, C.Y. Wang, A comparison of the ideal strength between L1Co (Al, W) and NiAl under tension and shear from first-principles calculations, Appl. Phys. Lett. 94 (2009) 261909.
DOI: 10.1063/1.3170752
Google Scholar