Elastic Properties, Phonon Focusing and Electronic Structures of Typical Long-Period Superstructures Al5Ti2 and Al11Ti5

Article Preview

Abstract:

The first-principles calculations were performed to systematically study the elastic properties, phonon focusing and electronic structures of typical long-period superstructures Al5Ti2 and Al11Ti5. The obtained lattice parameters are in good agreement with the experimental data. The elastic constants were calculated, and bulk modulus B, shear modulus G, Young’s modulus E and Poison’s ration ν were further obtained. Both of the numerical indicators and the three dimensional images show that Al5Ti2 and Al11Ti5 are anisotropic, and the anisotropy is slightly high for Al5Ti2. Three slowness surfaces were constructed for Al5Ti2 and Al11Ti5 to investigate the phonon focusing patterns, and the group velocity surfaces were also obtained to gain more insight into the elastic anisotropy. Due to elastic anisotropy, both of the slowness surfaces and the group velocity surfaces are nonspherical, and the anisotropy is highest for slow transverse mode, and then followed by fast transverse mode and longitudinal mode. The electronic density of states and charge density distribution of Al5Ti2 and Al11Ti5 indicate that due to strong hybridization between Al-2p and Ti-3d, there is a strong directional bonding between the Al and Ti atoms. Electronic structures reveal the underling mechanism of elastic properties and phonon focusing for Al5Ti2 and Al11Ti5.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1026-1035

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Nakano, K. Hayashi, Y. Umakoshi, Y.L. Chiu, P. Veyssière, Effects of Al concentration and resulting long-period superstructures on the plastic properties at room temperature of Al-rich TiAl single crystals, Philos. Mag. 85 (2005) 2527-2548.

DOI: 10.1080/14786430500079728

Google Scholar

[2] S. Hata, T. Nakano, N. Kuwano, M. Itakura, S. Matsumura, Y. Umakoshi, Microscopic properties of long-period ordering in Al-rich TiAl alloys, Metall. Mater. Trans. A 39 (2008) 1610-1617.

DOI: 10.1007/s11661-007-9397-x

Google Scholar

[3] J.C. Schuster, M. Palm, Reassessment of the binary Aluminum-Titanium phase diagram, J. Phase Equilib. Diffus. 27 (2006) 255-277.

DOI: 10.1361/154770306x109809

Google Scholar

[4] T. Nakano, K. Hagihara, T. Seno, N. Sumida, M. Yamamoto, Y. Umakoshi, Stress anomaly in Al-rich Ti-Al single crystals deformed by the motion of 1/2«110] ordinary dislocations, Philos. Mag. Lett. 78 (1998) 385-391.

DOI: 10.1080/095008398177788

Google Scholar

[5] T. Nakano, K. Matsumoto, T. Seno, K. Oma, Y. Umakoshi, Effect of chemical ordering on the deformation mode of Al-rich Ti-Al single crystals, Philos. Mag. A 74 (1996) 251-268.

DOI: 10.1080/01418619608239700

Google Scholar

[6] C. Colinet, A. Pasturel, Structural stability of one-dimensional long-period structures in the TiAl3 compound, J. Phys.: Condens. Matter 14 (2002) 6713-6727.

DOI: 10.1088/0953-8984/14/26/311

Google Scholar

[7] G. Ghosh, M. Asta, First-principles calculation of structural energetics of Al-TM (TM = Ti, Zr, Hf) intermetallics, Acta Mater. 53 (2005) 3225-3252.

DOI: 10.1016/j.actamat.2005.03.028

Google Scholar

[8] P.S. Ghosh, A. Arya, U.D. Kulkarni, G.K. Dey, S. Hata, T. Nakano, K. Hagihara, H. Nakashima, Ab-initio study of long-period superstructures and anti-phase boundaries in Al-rich γ-TiAl (L10)-based alloys, Philos. Mag. 94 (2014) 1202-1218.

DOI: 10.1080/14786435.2014.885135

Google Scholar

[9] A. Raman, K. Schubert, On the constitution of some alloy series related to TiAl3. II. investigations in some T-Al-Si-and T4.. 6-in systems, Z. Metallk. 56 (1965) 44-52.

Google Scholar

[10] J.C. Schuste, H. Ipser, Phases and phase relations in the partial system TiAl3-TiAl, Z. Metallk. 81 (1990) 389-396.

Google Scholar

[11] E. Illeková, P. Švec, D. Janičkovič, Influence of the processing on the ordering process in the Al-Ti binary system with composition close to Al3Ti, J. Phys: Conf. Ser. 144 (2009) 012111.

DOI: 10.1088/1742-6596/144/1/012111

Google Scholar

[12] I. Ohnuma, Y. Fujita, H. Mitsui, K. Ishikawa, R. Kainuma, K. Ishida, Phase equilibria in the Ti-Al binary system, Acta Mater. 48 (2000) 3113-3123.

DOI: 10.1016/s1359-6454(00)00118-x

Google Scholar

[13] H.Z. Fu, L.P. Yao, J. Fu, Z.F. Hou, Theoretical investigations on the elastic wave propagation and phonon focusing in AlLi crystal, Mater. Chem. Phys. 152 (2015) 34-40.

DOI: 10.1016/j.matchemphys.2014.12.006

Google Scholar

[14] G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54 (1996) 11169-11186.

DOI: 10.1103/physrevb.54.11169

Google Scholar

[15] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996) 3865-3868.

DOI: 10.1103/physrevlett.77.3865

Google Scholar

[16] P.E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50 (1994) 17953-17979.

DOI: 10.1103/physrevb.50.17953

Google Scholar

[17] T. Tsuchiya, K. Kawamura, Systematics of elasticity: Ab initio study in B1-type alkaline earth oxides, J. Chem. Phys. 114 (2001) 10086-10093.

DOI: 10.1063/1.1371498

Google Scholar

[18] P. Ravindran, L. Fast, P.A. Korzhavyi, B. Johansson, J. Wills, O. Eriksson, Density functional theory for calculation of elastic properties of orthorhombic crystals: Application to TiSi2, J. Appl. Phys. 84 (1998) 4891-4904.

DOI: 10.1063/1.368733

Google Scholar

[19] M.J. Peng, Y.H. Duan, Y. Sun, Anisotropic elastic properties and electronic structure of Sr-Pb compounds, Comput. Mater. Sci. 98 (2015) 311-319.

DOI: 10.1016/j.commatsci.2014.10.060

Google Scholar

[20] S.F. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, Philos. Mag. 45 (1954) 823-843.

DOI: 10.1080/14786440808520496

Google Scholar

[21] P.Y. Tang, G.H. Huang, Q.L. Xie, J.L. Huang, F. Ning, Elastic anisotropy and phonon focusing for tetragonal crystals: Application to γ-TiAl, Comput. Mater. Sci. 118 (2016) 117-123.

DOI: 10.1016/j.commatsci.2016.03.011

Google Scholar

[22] A.G. Every, General closed-form expressions for acoustic waves in elastically anisotropic solids, Phys. Rev. B 22 (1980) 1746-1760.

DOI: 10.1103/physrevb.22.1746

Google Scholar

[23] G.L. Koos, J.P. Wolfe, Piezoelectricity and ballistic heat flow, Phys. Rev. B 29 (1984) 6015-6017.

DOI: 10.1103/physrevb.29.6015

Google Scholar

[24] Y.J. Wang, C.Y. Wang, A comparison of the ideal strength between L1Co (Al, W) and NiAl under tension and shear from first-principles calculations, Appl. Phys. Lett. 94 (2009) 261909.

DOI: 10.1063/1.3170752

Google Scholar