In Situ Observation of Diffusion Behavior and Microstructural Evolution on Interfaces in Al/Cu Bimetal

Article Preview

Abstract:

Synchrotron X-ray radiography was used to in situ study the diffusion behavior and microstructural evolution of Al/Cu bimetal. The interface diffusion, dendritic/eutectic growth and the formation of intermetallic compounds around the Al/Cu bimetal interface were analyzed. During the isothermal diffusion process, a liquefied transition zone at the interface with a concentration gradient was formed when the Cu concentration exceeded eutectic composition of Al-Cu alloy. During the solidification of transition zone, the growth sequence of α-Al dendrites and eutectic structure were mainly dominated by the variation of Cu concentration and thermal field according to the temperature of the liquidus line of the equilibrium phase diagram. Finally, the transition zone around the interface were identified to be I (α-Al), II (Al+Al2Cu), III (Al2Cu) and IV (Al2Cu, AlCu and Al4Cu9), respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1020-1025

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W.B. Lee, K.S. Bang, S.B. Jung, Effects of intermetallic compound on the electrical and mechanical properties of friction welded Cu/Al bimetallic joints during annealing, J. Alloys Compd. 390 (2005) 212-219.

DOI: 10.1016/j.jallcom.2004.07.057

Google Scholar

[2] X.B. Li, G.Y. Zu, P. Wang, Microstructural development and its effects on mechanical properties of Al/Cu laminated composite, T. Nonferr. Metal Soc. 25 (2015) 36-45.

Google Scholar

[3] E. Hug, N. Bellido, Brittleness study of intermetallic (Cu, Al) layers in copper-clad aluminium thin wires, Mater. Sci. Eng. A 528 (2011) 7103-7106.

DOI: 10.1016/j.msea.2011.05.077

Google Scholar

[4] Y.J. Su, X.H. Liu, H.Y. Huang, X.F. Liu, J.X. Xie, Interfacial Microstructure and Bonding Strength of Copper Cladding Aluminum Rods Fabricated by Horizontal Core-Filling Continuous Casting, Metall. Mater. Trans. A 42 (2011) 4088-4099.

DOI: 10.1007/s11661-011-0785-x

Google Scholar

[5] M. Abbasi, A. Karimi Taheri, M.T. Salehi, Growth rate of intermetallic compounds in Al/Cu bimetal produced by cold roll welding process, J. Alloys Compd. 319 (2001) 233-241.

DOI: 10.1016/s0925-8388(01)00872-6

Google Scholar

[6] H.G. Kim, S.M. Kim, J.Y. Lee, M.R. Choi, S.H. Choe, K.H. Kim, J.S. Ryu, S. Kim, S.Z. Han, W.Y. Kim, S.H. Lim, Microstructural evaluation of interfacial intermetallic compounds in Cu wire bonding with Al and Au pads, Acta Mater. 64 (2014) 356-366.

DOI: 10.1016/j.actamat.2013.10.049

Google Scholar

[7] K. Meguro, M. O, M. Kajihara, Growth behavior of compounds due to solid-state reactive diffusion between Cu and Al, J. Mater. Sci. 47 (2012) 4955-4964.

DOI: 10.1007/s10853-012-6370-x

Google Scholar

[8] Y. Han, L. Ben, J. Yao, S. Feng, C. Wu, Investigation on the interface of Cu/Al couples during isothermal heating, Int. J. Miner. Metall. Mater. 22 (2015) 309-318.

DOI: 10.1007/s12613-015-1075-1

Google Scholar

[9] S. Tavassoli, M. Abbasi, R. Tahavvori, Controlling of IMCs layers formation sequence, bond strength and electrical resistance in AlCu bimetal compound casting process, Mater. Des. 108 (2016) 343-353.

DOI: 10.1016/j.matdes.2016.06.076

Google Scholar

[10] F. Cao, F. Yang, H. Kang, C. Zou, T. Xiao, W. Huang, T. Wang, Effect of traveling magnetic field on solute distribution and dendritic growth in unidirectionally solidifying Sn–50 wt%Pb alloy: An in situ observation, J. Cryst. Growth 450 (2016).

DOI: 10.1016/j.jcrysgro.2016.06.034

Google Scholar

[11] D. Casari, W.U. Mirihanage, K.V. Falch, I.G. Ringdalen, J. Friis, R. Schmid-Fetzer, D. Zhao, Y. Li, W.H. Sillekens, R.H. Mathiesen, α-Mg primary phase formation and dendritic morphology transition in solidification of a Mg-Nd-Gd-Zn-Zr casting alloy, Acta Mater. 116 (2016).

DOI: 10.1016/j.actamat.2016.06.035

Google Scholar

[12] L. Abou-Khalil, G. Salloum-Abou-Jaoude, G. Reinhart, C. Pickmann, G. Zimmermann, H. Nguyen-Thi, Influence of gravity level on Columnar-to-Equiaxed Transition during directional solidification of Al – 20 wt. % Cu alloys, Acta Mater. 110 (2016).

DOI: 10.1016/j.actamat.2016.03.007

Google Scholar

[13] T.M. Wang, F. Cao, Z.N. Chen, H.J. Kang, J. Zhu, Y.N. Fu, T.Q. Xiao, T.J. Li, Three dimensional microstructures and wear resistance of Al-Bi immiscible alloys with different grain refiners, Sci. China Tech. Sci. 58 (2015) 870-875.

DOI: 10.1007/s11431-015-5816-1

Google Scholar

[14] S. Shuai, E. Guo, A.B. Phillion, M.D. Callaghan, T. Jing, P.D. Lee, Fast synchrotron X-ray tomographic quantification of dendrite evolution during the solidification of MgSn alloys, Acta Mater. 118 (2016) 260-269.

DOI: 10.1016/j.actamat.2016.07.047

Google Scholar

[15] H.L. Xie, B. Deng, G.H. Du, Y.N. Fu, R.C. Chen, G.Z. Zhou, Y.Q. Ren, Y.D. Wang, Y.L. Xue, G.Y. Peng, Y. He, H. Guo, T.Q. Xiao, Latest advances of X-ray imaging and biomedical applications beamline at SSRF, Nucl. Sci. Tech. 26 (2015) 16.

DOI: 10.1088/1748-0221/8/08/c08003

Google Scholar

[16] T.M. Wang, F. Cao, P. Zhou, H.J. Kang, Z.N. Chen, Y.N. Fu, T.Q. Xiao, W.X. Huang, Q.X. Yuan, Study on diffusion behavior and microstructural evolution of Al/Cu bimetal interface by synchrotron X-ray radiography, J. Alloys Compd. 616 (2014).

DOI: 10.1016/j.jallcom.2014.07.172

Google Scholar

[17] ASM Metals Handbook, Alloy phase diagram, vol 3, 1992, p.44.

Google Scholar

[18] A. Bogno, H. Nguyen-Thi, N. Bergeon, N. Mangelinck-Noël, T. Schenk, B. Billia, E. Boller, J. Baruchel, Application of synchrotron X-ray radiography to the study of dendritic equiaxed microstructure formation in Al–Cu alloys, Nucl. Instrum. Methods Phys. Res., Sect. B 268 (2010).

DOI: 10.1007/s12666-009-0058-1

Google Scholar