Fabrication and Properties of In Situ B13P2 Reinforced Cu-Based Composites

Article Preview

Abstract:

In this work, a new type of B13P2 reinforced Cu matrix composite (B13P2/Cu) with excellent wear resistance properties has been fabricated. The experimental results reveal that when the total content of P and B was 3wt.% and the mass ratio of P to B was 2:3, the brittle reticular divorced eutectic Cu3P disappeared and B13P2 phase uniformly distributed in Cu matrix. The microstructure can be controlled and designed according to the ratio of P and B. The microhardness of B13P2 reached up to 1837 HV, which was as high as that of SiC, while the mircohardness of Cu matrix was about 5 times more than pure that of Cu. The wear resistance data indicate that the largest weight loss of pure Cu was approximately four times more than that of the B13P2 reinforced composites at the 40 min. The CTE of the new composites also decreased as compared with pure Cu.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1007-1014

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X.R. Shan, R.J. Huang, Y.M. Han, C.J. Huang, L.F. Li, Preparation and property study of La(Fe, Si, Co)13/Cu composite with nearly zero thermal expansion behavior, J. Alloys Comp. 648 (2015) 464-466.

DOI: 10.1016/j.jallcom.2015.06.139

Google Scholar

[2] S.C. Tjong, K.C. Abrasive, Abrasive wear behavior of TiB2 particle-reinforced copper matrix composites, Mater. Sci. Eng., A 282 (2000) 183-186.

DOI: 10.1016/s0921-5093(99)00752-2

Google Scholar

[3] P. Casati, M. Vedani, Metal matrix composites reinforced by nano-particles-a review, Metals, 4 (2014) 65-83.

DOI: 10.3390/met4010065

Google Scholar

[4] K. Chu, Q.Y. Wu, C.C. Jia, X.B. Liang, J.H. Nie, W.H. Tian, G.S. Gai, H. Guo, Fabrication and effective thermal conductivity of multi-walled carbon nanotubes reinforced Cu matrix composites for heat sink applications, Compos. Sci. Technol. 70 (2010).

DOI: 10.1016/j.compscitech.2009.10.021

Google Scholar

[5] Y.Y. Wu, X.F. Liu, J.Q. Zhang, J.Y. Qin, C. Li, In situ formation of nano-scale Cu-Cu2O composites, Mater. Sci. Eng., A 527 (2010) 1544-1547.

DOI: 10.1016/j.msea.2009.10.041

Google Scholar

[6] F. Shehata, A. Fathy, M. Abdelhameed, S.F. Moustafa, Preparation and properties of Al2O3 nanoparticle reinforced copper matrix composites by in situ processing, Mater. Design 30 (2009) 2756-2762.

DOI: 10.1016/j.matdes.2008.10.005

Google Scholar

[7] M.S. Motta, P.K. Jena, E.A. Brocchi, I.G. Solorzano, Characterization of Cu-Al2O3nano-scale composites synthesized by in situ reduction, Mater. Sci. Eng., C 15 (2001) 175-177.

DOI: 10.1016/s0928-4931(01)00272-7

Google Scholar

[8] S.G. Sapate, A. Uttarwar, R.C. Rathod, R.K. Paretkar, Analyzing dry sliding wear behaviour of copper matrix composites reinforced with pre-coated SiCp particles, Mater. Design 30 (2009) 376-386.

DOI: 10.1016/j.matdes.2008.04.055

Google Scholar

[9] Kang Hyun-Ki, Kang Suk Bong, Thermal decomposition of silicon carbide in a plasma-sprayed Cu/SiC composite deposit, Mater. Sci. Eng., A 428 (2006) 336-345.

DOI: 10.1016/j.msea.2006.05.054

Google Scholar

[10] S.C. Tjong, Z.Y. Ma, Microstructural and mechanical characteristics of in situ metal matrix composites, Mater. Sci. Eng., R 29 (2000) 49-113.

Google Scholar

[11] J. Ding, N.Q. Zhao, C.S. Shi, X.W. Du, J.J. Li, In situ formation of Cu–ZrO2 composites by chemical routes, J. Alloys Comp. 425 (2006) 390-394.

DOI: 10.1016/j.jallcom.2006.01.058

Google Scholar

[12] O. Olofsson, The crystal structure of Cu3P, Acta Chem. Scand. 26 (1972) 2777-2787.

DOI: 10.3891/acta.chem.scand.26-2777

Google Scholar

[13] J.Y. Chen, X.K. Zhao, X.C. Zou, J.H. Huang, H.C. Hu, H.L. Luo, Characterization of Cu3P phase in Sn3. 0Ag0. 5Cu0. 5P/Cu solder joints, Int. J. of Miner., Metall. Mater. 21 (2014) 65-70.

DOI: 10.1007/s12613-014-0866-0

Google Scholar

[14] L.D. Trizio, A. Figueroal, L. Manna, A. Genovese, C. Georget, R. Brescial, Z. Saghi, R. Simonutti, M.V. Huis, A. Falqui, Size-tunable, hexagonal plate-like Cu3P and janus-like Cu-Cu3P nanocrystals, J. Am. Chem. Soc. 6 (2012) 32-41.

DOI: 10.1021/nn203702r

Google Scholar

[15] P.K. Deshpande, R.Y. Lin, Wear resistance of WC particle reinforced copper matrix composites and the effect of porosity, Mater. Sci. Eng., A 418 (2006) 137-145.

DOI: 10.1016/j.msea.2005.11.036

Google Scholar

[16] ÖmerSavas, RamazanKayikci, Production and wear properties of metal matrix composites reinforced with boride particles, Mater. Design 51 (2013) 641-647.

DOI: 10.1016/j.matdes.2013.04.049

Google Scholar