[1]
X.R. Shan, R.J. Huang, Y.M. Han, C.J. Huang, L.F. Li, Preparation and property study of La(Fe, Si, Co)13/Cu composite with nearly zero thermal expansion behavior, J. Alloys Comp. 648 (2015) 464-466.
DOI: 10.1016/j.jallcom.2015.06.139
Google Scholar
[2]
S.C. Tjong, K.C. Abrasive, Abrasive wear behavior of TiB2 particle-reinforced copper matrix composites, Mater. Sci. Eng., A 282 (2000) 183-186.
DOI: 10.1016/s0921-5093(99)00752-2
Google Scholar
[3]
P. Casati, M. Vedani, Metal matrix composites reinforced by nano-particles-a review, Metals, 4 (2014) 65-83.
DOI: 10.3390/met4010065
Google Scholar
[4]
K. Chu, Q.Y. Wu, C.C. Jia, X.B. Liang, J.H. Nie, W.H. Tian, G.S. Gai, H. Guo, Fabrication and effective thermal conductivity of multi-walled carbon nanotubes reinforced Cu matrix composites for heat sink applications, Compos. Sci. Technol. 70 (2010).
DOI: 10.1016/j.compscitech.2009.10.021
Google Scholar
[5]
Y.Y. Wu, X.F. Liu, J.Q. Zhang, J.Y. Qin, C. Li, In situ formation of nano-scale Cu-Cu2O composites, Mater. Sci. Eng., A 527 (2010) 1544-1547.
DOI: 10.1016/j.msea.2009.10.041
Google Scholar
[6]
F. Shehata, A. Fathy, M. Abdelhameed, S.F. Moustafa, Preparation and properties of Al2O3 nanoparticle reinforced copper matrix composites by in situ processing, Mater. Design 30 (2009) 2756-2762.
DOI: 10.1016/j.matdes.2008.10.005
Google Scholar
[7]
M.S. Motta, P.K. Jena, E.A. Brocchi, I.G. Solorzano, Characterization of Cu-Al2O3nano-scale composites synthesized by in situ reduction, Mater. Sci. Eng., C 15 (2001) 175-177.
DOI: 10.1016/s0928-4931(01)00272-7
Google Scholar
[8]
S.G. Sapate, A. Uttarwar, R.C. Rathod, R.K. Paretkar, Analyzing dry sliding wear behaviour of copper matrix composites reinforced with pre-coated SiCp particles, Mater. Design 30 (2009) 376-386.
DOI: 10.1016/j.matdes.2008.04.055
Google Scholar
[9]
Kang Hyun-Ki, Kang Suk Bong, Thermal decomposition of silicon carbide in a plasma-sprayed Cu/SiC composite deposit, Mater. Sci. Eng., A 428 (2006) 336-345.
DOI: 10.1016/j.msea.2006.05.054
Google Scholar
[10]
S.C. Tjong, Z.Y. Ma, Microstructural and mechanical characteristics of in situ metal matrix composites, Mater. Sci. Eng., R 29 (2000) 49-113.
Google Scholar
[11]
J. Ding, N.Q. Zhao, C.S. Shi, X.W. Du, J.J. Li, In situ formation of Cu–ZrO2 composites by chemical routes, J. Alloys Comp. 425 (2006) 390-394.
DOI: 10.1016/j.jallcom.2006.01.058
Google Scholar
[12]
O. Olofsson, The crystal structure of Cu3P, Acta Chem. Scand. 26 (1972) 2777-2787.
DOI: 10.3891/acta.chem.scand.26-2777
Google Scholar
[13]
J.Y. Chen, X.K. Zhao, X.C. Zou, J.H. Huang, H.C. Hu, H.L. Luo, Characterization of Cu3P phase in Sn3. 0Ag0. 5Cu0. 5P/Cu solder joints, Int. J. of Miner., Metall. Mater. 21 (2014) 65-70.
DOI: 10.1007/s12613-014-0866-0
Google Scholar
[14]
L.D. Trizio, A. Figueroal, L. Manna, A. Genovese, C. Georget, R. Brescial, Z. Saghi, R. Simonutti, M.V. Huis, A. Falqui, Size-tunable, hexagonal plate-like Cu3P and janus-like Cu-Cu3P nanocrystals, J. Am. Chem. Soc. 6 (2012) 32-41.
DOI: 10.1021/nn203702r
Google Scholar
[15]
P.K. Deshpande, R.Y. Lin, Wear resistance of WC particle reinforced copper matrix composites and the effect of porosity, Mater. Sci. Eng., A 418 (2006) 137-145.
DOI: 10.1016/j.msea.2005.11.036
Google Scholar
[16]
ÖmerSavas, RamazanKayikci, Production and wear properties of metal matrix composites reinforced with boride particles, Mater. Design 51 (2013) 641-647.
DOI: 10.1016/j.matdes.2013.04.049
Google Scholar