Synthesis and Characterization of Magnetic Al/NiO Composite Pigments with Low Infrared Emissivity

Article Preview

Abstract:

Generally, traditional low infrared coatings based on metallic pigments cannot have low lightness, low infrared emissivity and low radar reflectivity simultaneously. Herein, we used a simple and efficient method to synthesize magnetic Al/NiO composite pigments which possessed all these attributes to a degree. The results indicated that the covering area of NiO on the aluminum flake could be tuned by the addition amount of NiCO3 and the reaction temperature of hot-flowing, both of which played a key role on the VIS/IR spectral reflectance and magnetic properties. The magnetic Al/NiO composite pigments with low lightness and low infrared emissivity could be obtained at 130 °C for 24 h in hot flowing liquid. The lightness L* could be decreased to 75.94, however the infrared emissivity (8-14 μm) was also low to 0.421. Compared with the single aluminum flakes, the Al/NiO magnetic composite pigments presented stronger magnetic properties. Therefore, the Al/NiO magnetic composite pigments offered a new choice for the pigments of multispectral stealth coating.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1561-1568

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F.J. Maile, G. Pfaff, P. Reynders, Effect pigments—past, present and future, Prog. Org. Coat. 54(3) (2005) 150-163.

DOI: 10.1016/j.porgcoat.2005.07.003

Google Scholar

[2] G. Pfaff, P.W. Gabel, Colour Measurement from many angles, European coatings journal (2005) 30.

Google Scholar

[3] H. -J. Streitberger, W. Kreis, G. Decher, J. Schlenoff, Automotive Paints and Coatings, Wiley Online Library, (2006).

Google Scholar

[4] L. Yuan, X. Weng, L. Deng, Influence of binder viscosity on the control of infrared emissivity in low emissivity coating, Infrared Physics & Technology 56 (2013) 25-29.

DOI: 10.1016/j.infrared.2012.09.004

Google Scholar

[5] T.A. Germer, M.E. Nadal, Modeling the appearance of special effect pigment coatings, International Symposium on Optical Science and Technology, International Society for Optics and Photonics, 2001, pp.77-86.

Google Scholar

[6] P. Karlsson, A.E. Palmqvist, K. Holmberg, Surface modification for aluminium pigment inhibition, Adv. Colloid Interface Sci. 128 (2006) 121-134.

DOI: 10.1016/j.cis.2006.11.010

Google Scholar

[7] J. Manara, M. Reidinger, M. Rydzek, M. Arduini-Schuster, Polymer-based pigmented coatings on flexible substrates with spectrally selective characteristics to improve the thermal properties, Prog. Org. Coat. 70(4) (2011) 199-204.

DOI: 10.1016/j.porgcoat.2010.09.024

Google Scholar

[8] W. Reisser, Oxidized colored aluminium pigments, process for their production and their use, Google Patents, (1999).

Google Scholar

[9] G. Kaupp, W. Ostertag, G. Sommer, Corrosion-stable aluminum pigments and process for the production thereof, Google Patents, (2001).

Google Scholar

[10] W. Ostertag, K. Bittler, G. Bock, Preparation of metallic pigments having a metallic luster, Google Patents, (1982).

Google Scholar

[11] W. Ostertag, N. Mronga, Metal oxide coated aluminum pigments, Google Patents, (1990).

Google Scholar

[12] R. Supplit, U. Schubert, Corrosion protection of aluminum pigments by sol–gel coatings, Corros. Sci. 49(8) (2007) 3325-3332.

DOI: 10.1016/j.corsci.2007.03.014

Google Scholar

[13] S.K. Nadkarni, Zirconia sol, cobalt nitrate, iron nitrate, Google Patents, (1993).

Google Scholar

[14] L. Yuan, X. Weng, W. Du, J. Xie, L. Deng, Optical and magnetic properties of Al/Fe 3 O 4 core–shell low infrared emissivity pigments, J. Alloys Compd. 583 (2014) 492-497.

DOI: 10.1016/j.jallcom.2013.08.133

Google Scholar

[15] L. Yuan, X. Weng, J. Xie, W. Du, L. Deng, Solvothermal synthesis and visible/infrared optical properties of Al/Fe 3 O 4 core–shell magnetic composite pigments, J. Alloys Compd. 580 (2013) 108-113.

DOI: 10.1016/j.jallcom.2013.05.100

Google Scholar

[16] X. Ye, C. Zheng, X. Xiao, S. Cai, Synthesis, characterization and infrared emissivity study of SiO 2 /Ag/TiO 2 sandwich, core-shell composites, Mater. Lett. 141(13) (2015) 191-193.

DOI: 10.1016/j.matlet.2014.11.085

Google Scholar

[17] T. Ahmad, K.V. Ramanujachary, S.E. Lofland, A.K. Ganguli, Magnetic and electrochemical properties of nickel oxide nanoparticles obtained by the reverse-micellar route, Solid State Sci. 8(5) (2006) 425-430.

DOI: 10.1016/j.solidstatesciences.2005.12.005

Google Scholar

[18] J.S. Smart, S. Greenwald, Crystal Structure Transitions in Antiferromagnetic Compounds at the Curie Temperature, Phys. Rev. 82(1) (1951) 113-114.

DOI: 10.1103/physrev.82.113

Google Scholar

[19] Y. Shimomura, I. Tsubokawa, M. Kojima, On Nickel Oxides of High Oxygen Content, J. Phys. Soc. Jpn. 9(4) (1954) 521-524.

DOI: 10.1143/jpsj.9.521

Google Scholar

[20] S.A. Makhlouf, F.T. Parker, F.E. Spada, A.E. Berkowitz, Magnetic anomalies in NiO nanoparticles, J. Appl. Phys. 81(8) (1997) 5561-5563.

DOI: 10.1063/1.364661

Google Scholar

[21] S. Seo, M.J. Lee, D.C. Kim, S.E. Ahn, Electrode dependence of resistance switching in polycrystalline NiO films, Appl. Phys. Lett. 87(26) (2005) 263507-263509.

Google Scholar

[22] J.P.K. Seville, C.D. Willett, P.C. Knight, Interparticle forces in fluidisation: a review, Powder Technol. 113(3) (2000) 261-268.

DOI: 10.1016/s0032-5910(00)00309-0

Google Scholar

[23] H.A. Babrekar, N.V. Kulkarni, J.P. Jog, V.L. Mathe, S.V. Bhoraskar, Influence of filler size and morphology in controlling the thermal emissivity of aluminium/polymer composites for space applications, Materials Science and Engineering: B 168(1) (2010).

DOI: 10.1016/j.mseb.2009.11.009

Google Scholar