[1]
Aminikia B. Investigation of the pre-milling effect on synthesis of nanocrystalline TiB2–TiC composite prepared by SHS method. Powder Technology. 2012; 232: 78-86.
DOI: 10.1016/j.powtec.2012.07.058
Google Scholar
[2]
Beyhaghi M, Kiani-Rashid A-R, Kashefi M, Khaki JV, Jonsson S. Effect of powder reactivity on fabrication and properties of NiAl/Al2O3 composite coated on cast iron using spark plasma sintering. Applied Surface Science. 2015; 344: 1-8.
DOI: 10.1016/j.apsusc.2015.01.186
Google Scholar
[3]
Cui H-z, Ma L, Cao L-l, Teng F-l, Cui N. Effect of NiAl content on phases and microstructures of TiC–TiB2–NiAl composites fabricated by reaction synthesis. Transactions of Nonferrous Metals Society of China. 2014; 24: 346-53.
DOI: 10.1016/s1003-6326(14)63067-3
Google Scholar
[4]
Burkes DE, Moore JJ. Microstructure and kinetics of a functionally graded NiTi–TiCx composite produced by combustion synthesis. Journal of Alloys and Compounds. 2007; 430: 274-81.
DOI: 10.1016/j.jallcom.2006.05.008
Google Scholar
[5]
Curfs C, Turrillas X, Vaughan GBM, Terry AE, Kvick Å, Rodríguez MA. Al–Ni intermetallics obtained by SHS; A time-resolved X-ray diffraction study. Intermetallics. 2007; 15: 1163-71.
DOI: 10.1016/j.intermet.2007.02.007
Google Scholar
[6]
Kochetov NA, Markin NV. SHS in the Ni–Al system: Influence of mechanical activation, vacuum heat treatment, and ambient pressure. International Journal of Self-Propagating High-Temperature Synthesis. 2015; 24: 132-4.
DOI: 10.3103/s1061386215030061
Google Scholar
[7]
Shi X, Wang M, Zhai W, Zhu Z, Xu Z, Zhang Q, et al. Friction and wear behavior of NiAl–10wt%Ti3SiC composites. Wear. 2013; 303: 9-20.
DOI: 10.1016/j.wear.2013.02.013
Google Scholar
[8]
Sheng LY, Yang F, Xi TF, Guo JT. Investigation on microstructure and wear behavior of the NiAl–TiC–Al2O3 composite fabricated by self-propagation high-temperature synthesis with extrusion. Journal of Alloys and Compounds. 2013; 554: 182-8.
DOI: 10.1016/j.jallcom.2012.11.144
Google Scholar
[9]
He L, Tan Y, Wang X, Tan H, Zhou C. Tribological properties of WC and CeO2 particles reinforced in-situ synthesized NiAl matrix composite coatings at elevated temperature. Surface and Coatings Technology. 2014; 244: 123-30.
DOI: 10.1016/j.surfcoat.2014.01.048
Google Scholar
[10]
Liu X, Liang L, Li X, Li Y. Abrasion wear behavior of WC–Ni3Al cermet with plate-like triangular prismatic WC grains. Ceramics International. 2015; 41: 5147-58.
DOI: 10.1016/j.ceramint.2014.12.089
Google Scholar
[11]
Yuan J, Zhang X, Zhang C, Sun K, Liu C. In-situ synthesis of NiAl/WC composites by thermal explosion reaction. Ceramics International. (2016).
DOI: 10.1016/j.ceramint.2016.03.237
Google Scholar
[12]
Zhu X, Zhang T, Marchant D, Morris V. The structure and properties of NiAl formed by SHS using induction heating. Materials Science and Engineering: A. 2011; 528: 1251-60.
DOI: 10.1016/j.msea.2010.10.002
Google Scholar