Synthesis and Characterization of Si3N4 Nanopowder by RF Induction Thermal Plasma

Article Preview

Abstract:

Nano-Si3N4 has been synthesized by the thermal plasma with silicon tetrachloride (SiCl4) as the Si source, liquid ammonia (NH3) as the N source, and silane (SiH4) as the catalyst. And the prepared Nano-Si3N4was heat-treated atfour different temperatures of 1350°C, 1400°C, 1450°C, 1500°C. The as-prepared samples were characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and fourier transform infrared spectroscopy (FTIR). The results showed that the particle size of the nano-Si3N4 powder was less than 100 nm and it was amorphous when the temperature below 1450°C. At 1500°C, the synthesized Si3N4 powder with the grain size of 10 nm was crystallized, and the α-phase Si3N4 reached more than 90%.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1597-1602

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Khajelakzay, S. R. Bakhshi, G. H. Borhani, M. Ramazani, Ceram. Int. 42(2016) 14867-14872.

DOI: 10.1016/j.ceramint.2016.06.123

Google Scholar

[2] P. Vongpayabal, S. Kimura, Adv. Powder Technol. 156(2005) 73-82.

Google Scholar

[3] A. M. Sage, J. H. Histed, Metallurgy 8(1961) 196-212.

Google Scholar

[4] Z. Wu, Z. Y. Zhang, J. N. Yun, J. F. Yan, T. G. You, Physica B 428(2013) 10-13.

Google Scholar

[5] K. I. Kim, S. C. Choi, J. H. Kim, W. S. Cho, K. T. Hwang, K. S. Han, Ceram. Int. 40(2014) 8117-8123.

Google Scholar

[6] S. Klébert, A. M. Keszler, I. Sajó, E. Drotár, I. Bertóti, E. Bódis, P. Fazekas, Z. Károly, J. Szépvölgyi, Ceram. Int. 40(2014) 3925-3931.

DOI: 10.1016/j.ceramint.2013.08.036

Google Scholar

[7] S. Sadeghzade, R. Emadi, S. Labbaf, Adv. Powder Technol. 27(2016) 2238-2244.

Google Scholar

[8] H. Zreiqat, Y. Ramaswamy, C. Wu, A. Paschalidis, Z. Lu, O. Birke, M. Mcdonald, D. Little, C.R. Dunstan, Biomaterials, 31(2010) 3175-3184.

DOI: 10.1016/j.biomaterials.2010.01.024

Google Scholar

[9] G. Peng, Y. Z. Jiang, J Chin Ceram Soc(Eng). 4(199) 27-34.

Google Scholar

[10] M. Yang, Q. Wang, M. L. Lv, H. M. Zhu, J. Eur. Ceram. 36(2016) 1899-(1904).

Google Scholar

[11] J. Ding, H. X. Zhu, G. Q. Li, C. J. Deng, Z. N. Chai, Ceram. Int. 42(2016) 2892-2898.

Google Scholar

[12] J. T. Huang, S. W. Zhang, Z. H. Huang, M. H. Fang, Y. G. Liu, K. Chen, Ceram. Int. 40(2014) 11063-11070.

Google Scholar

[13] F. X. Li, L. Fu, X. J. Ma, C. H. Sun, L. C. Wang, C. L. Guo, Y. T. Qian, J. Am. Ceram. Soc. 92(2009) 517-519.

Google Scholar

[14] F. K van Dijen, J. Eur. Ceram. 10(1992) 273-282.

Google Scholar