[1]
J. Lis, Pampuch, J. Piekarczyk, et al., New ceramics based on Ti3SiC2, Ceram. Int. 19 (1993) 219-222.
DOI: 10.1016/0272-8842(93)90052-s
Google Scholar
[2]
P. Eklund, M. Beckers, U. Jansson, et al., The Mn+1AXn phases: materials science and thin-film processing, Thin. Solid. Films. 518 (2010) 1851-1878.
DOI: 10.1016/j.tsf.2009.07.184
Google Scholar
[3]
Z.M. Sun, S.L. Yang, H. Hashimoto, Ti3SiC2 powder synthesis, Ceram. Int. 30 (2004) 1873-1877.
Google Scholar
[4]
Y.C. Zhou, Z.M. Sun, S. Tada, et al., Effect of Al addition on low-temperature synthesis of Ti3SiC2 powder, J. Alloy. Compd. 461 (2008) 579-584.
DOI: 10.1016/j.jallcom.2007.07.090
Google Scholar
[5]
B.Y. Liang, S.Z. Jin, M.Z. Wang, Low-Temperature Fabrication of high purity Ti3SiC2, J. Alloy. Compd. 460 (2008) 440-443.
DOI: 10.1016/j.jallcom.2007.05.074
Google Scholar
[6]
C.L. Yeh, Y.G. Shen, Effects of TiC addition on formation of Ti3SiC2 by self-propagating high-temperature synthesis, J. Alloy. Compd. 458 (2008) 286-291.
DOI: 10.1016/j.jallcom.2007.04.225
Google Scholar
[7]
Y.C. Zhou, Z.M. Sun, Temperature fluctuation hot pressing synthesis of Ti3SiC2, J. Mater. Sci. 35 (2000) 4343-4346.
Google Scholar
[8]
N.F. Gao, J.T. Li, D. Zhang, et al., Rapid synthesis of dense Ti3SiC2 by spark plasma sintering, J. Eur. Ceram. Soc. 22 (2002) 2365-70.
Google Scholar
[9]
Y.C. Zhou, S.S. Sun, Synthesis of single-phase Ti3SiC2 with the assistance of liquid phase formation, J. Alloy. Compd. 441 (2008) 192-196.
Google Scholar
[10]
J.F. Zhang, L.J. Wang, W. Jiang, et al., Effect of TiC content on the microstructure and properties of Ti3SiC2-TiC composites in situ fabricated by spark plasma sintering, Mater. Sci. Eng. A. 487 (2008) 137-143.
DOI: 10.1016/j.msea.2007.12.004
Google Scholar
[11]
J. Yang, L.M. Pan, W. Gu, et al. Microstructure and mechanical properties of in situ synthesized (TiB2+TiC)/Ti3SiC2 composites, Ceram. Int. 38 (2012) 649-655.
DOI: 10.1016/j.ceramint.2011.06.066
Google Scholar
[12]
Y.C. Zhou, Z.M. Sun, Cu/Ti3SiC2 composite: a new electrofriction material, Mater. Res. Innovat. 3 (1999) 80.
Google Scholar
[13]
Y. Liu, F. Luo, W.C. Zhou, et al., Dielectric and microwave absorption properties of Ti3SiC2 powders, J. Alloy. Compd. 576 (2013) 43-47.
Google Scholar
[14]
P. Balakrishna. Particle aggregates in powder processing-a review, Interceram. 44 (1995) 18.
Google Scholar
[15]
D.M. Liu, J.T. Lin, W.H. Tuan, Interdependence between green compact property and powder agglomeration and their relation to the sintering behaviour of zirconia powder, Ceram. Int. 25 (1999) 551.
DOI: 10.1016/s0272-8842(97)00094-1
Google Scholar
[16]
M. Narasimha, P. Balakrishna, R.B. Yadav, C. Ganguly, Influence of temperature of precipitation on agglomeration and other powder characteristics of ammonium diuranate, Powder. Technol. 115 (2001) 167.
DOI: 10.1016/s0032-5910(00)00336-3
Google Scholar
[17]
X.P. Tang, Y.F. Gao, H.F. Chen, et al., Funct. Mater. Lett. 04 (2011) 277.
Google Scholar
[18]
K.H. Yoon, Y.S. Cho, D.H. Lee, D.H. Kang, Powder characteristics of Pb(Mg1/3Nb2/3)O3 prepared by molten salt synthesis, J. Am. Ceram. Soc. 76(5) (1993) 1373-6.
DOI: 10.1111/j.1151-2916.1993.tb03770.x
Google Scholar
[19]
X. Guo, J.X. Wang, S.Y. Yang, Preparation of Ti3SiC2 powders by the molten salt method, Mater. Lett. 111 (2013) 211–213.
DOI: 10.1016/j.matlet.2013.08.077
Google Scholar
[20]
T.W. Ngai, Y.H. Kuang, Y.Y. Li, Impurity control in pressureless reactive synthesis of pure Ti3SiC2 bulk from elemental powders, Ceram. Int. 38 (2012) 463-469.
DOI: 10.1016/j.ceramint.2011.07.028
Google Scholar
[21]
J.H. Kim, S.T. Myung, Y.K. Sun. Molten salt synthesis of LiNi0. 5Mn1. 5O4 spinel for 5V class cathode material of Li-ion secondary battery, Eletrochimica. Acta. 49 (2004) 219-227.
DOI: 10.1016/j.electacta.2003.07.003
Google Scholar