Effect of Magnetic Orientation on the Microwave Absorption Properties for Planar-Anisotropy Ce2Fe17N3-δ Powders/Silicone Composite

Article Preview

Abstract:

The electromagnetic parameters of magnetic unoriented and oriented Ce2Fe17N3-δ powders/Silicone composite with 15 vol% were investigated in the 0.1–18 GHz range. It was found that the initial permeability increased from 2.78 to 3.6 as well as the optimal RL reached –61.3 dB with a thickness of 1.91 mm at 9.01 GHz for the composite after orientation. The microwave absorbing properties of oriented composite were greatly enhanced resulting from the perfect impedance match condition improved by rotational magnetic orientation. This novel rotational magnetic orientation method might provide a new way to design high performance microwave absorbers.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1638-1644

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y.B. Zhang, P. Wang, Y. Wang, L. Qiao, T. Wang, F.S. Li, J. Mater. Chem. C 3 (2015) 10813-10818.

Google Scholar

[2] R. Han, H.B. Yi, W.L. Zuo, T. Wang, L. Qiao, F.S. Li, J. Magn. Magn. Mater. 324 (2012) 2488-2491.

Google Scholar

[3] T. Liu, Y. Pang, M. Zhu, S. Kobayashi, Nanoscale 6 (2014) 2447-2454.

Google Scholar

[4] J.Q. Wei, Z.Q. Zhang, B.C. Wang, T. Wang, F.S. Li, J. Appl. Phys. 108 (2010) 123908.

Google Scholar

[5] G.G. Tan, Y.B. Zhang, L. Qiao, T. Wang, J.B. Wang, F.S. Li, Phys. B: Condens. Matter. 477 (2015) 52-55.

Google Scholar

[6] K.N. Rozanov, IEEE Trans. Antennas Propag. 48 (2000) 1230-1234.

Google Scholar

[7] J.L. Snoek, Physica 14 (1948) 207-217.

Google Scholar

[8] F.S. Li, F.S. Wen, D. Zhou, L. Qiao, W.L. Zuo, Chinese Phys. Lett. 25 (2008) 1068-1070.

Google Scholar

[9] L. Qiao, R. Han, T. Wang, L.Y. Tang, F.S. Li, J. Magn. Magn. Mater. 375 (2015) 100-105.

Google Scholar

[10] R. Li, T. Wang, G.G. Tan, W.L. Zuo, J.Q. Wei, L. Qiao, F.S. Li, J. Alloys Compd. 586 (2014) 239-243.

Google Scholar

[11] W.L. Zuo, L. Qiao, X. Chi, T. Wang, F.S. Li, J. Alloys Compd. 509 (2011) 6359-6363.

Google Scholar

[12] Y.B. Zhang, P. Wang, T.Y. Ma, Y. Wang, L. Qiao, T. Wang, Appl. Phys. Lett. 108 (2016) 092406.

Google Scholar

[13] Y. Otani, D.P.F. Hurley, H. Sun, J.M.D. Coey, J. Appl. Phys. 69 (1991) 5584.

Google Scholar

[14] W.F. Yang, L. Qiao, J.Q. Wei, Z.Q. Zhang, T. Wang, F.S. Li, J. Appl. Phys. 107 (2010) 033913.

Google Scholar

[15] T. Kato, H. Mikami, S. Noguchi, J. Appl. Phys. 108 (2010) 033903.

Google Scholar

[16] M. Matsumoto, Y. Miyata, IEEE T. Magn. 33 (1997) 4459-4464.

Google Scholar

[17] X. Ren, Y. Cheng, J. Magn. Magn. Mater. 393 (2015) 293-296.

Google Scholar

[18] X.S. Gu, G.G. Tan, S.W. Chen, Q.K. Man, C.T. Chang, X.M. Wang, R.W. Li, S.L. Che, L.Q. Jiang, J. Magn. Magn. Mater. 424 (2017) 39-43.

Google Scholar

[19] B.C. Wang, J.Q. Wei, Y. Yang, T. Wang, F.S. Li, J. Magn. Magn. Mater. 323 (2011) 1101-1103.

Google Scholar

[20] J.Q. Wei, T. Wang, F.S. Li, J. Magn. Magn. Mater. 323 (2011) 2608-2612.

Google Scholar

[21] J.C. Aphesteguy, A. Damiani, D. DiGiovanni, S.E. Jacobo, Phys. B: Condens. Matter. 404 (2009) 2713-2716.

Google Scholar

[22] S.P. Gairola, V. Verma, A. Singh, L.P. Purohit, R.K. Kotnala, Solid State Commu. 150 (2010) 147-151.

Google Scholar

[23] Y. Liu, Y. Feng, X. Wu, X. Han, J. Alloys Compd. 472 (2009) 441-445.

Google Scholar