Synthesis of Uniform Barium Ferrite Powders by Co-Precipitation Method

Article Preview

Abstract:

The uniform hexagonal barium ferrite powders were synthesized by co-precipitation method using metal chloride. The effects of the amount of hexadecyltrimethyl ammonium bromide (CTAB), the water bath and calcination temperature on the phase formation, microstructure and density of barium ferrites were systematically investigated. The results showed that the formation of uniform hexagonal barium ferrite powders was significantly influenced by the amount of CTAB and the water bath could lead to the larger grain size and density. The SEM demonstrated that the BaFe12O19 powders had plate-like shape with crystallite sizes varing from 150 to 200 nm. When the amount of CTAB was 0.2g/100ml and the calcination temperature was 850 °C, the barium ferrite powders were uniform which indicated that the amount of surfactant and calcination temperature were very optimum.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1649-1654

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Kong, Z. Li, L. Liu, R. Huang, M. Abshinova, Z. Yang, Recent progress in some composite materials and structures for specific electromagnetic applications, Int. Mater. Rev., 58(2013)203-259.

DOI: 10.1179/1743280412y.0000000011

Google Scholar

[2] M. Chen, R. -h. Fan, M. Gao, S. -b. Pan, M. -x. Yu, Z. -d. Zhang, Negative permittivity behavior in Fe50Ni50/Al2O3 magnetic composite near percolation threshold, J. Magn. Magn. Mater., 381(2015)105-108.

DOI: 10.1016/j.jmmm.2014.12.067

Google Scholar

[3] K. Sun, R. Fan, Z. Zhang, K. Yan, X. Zhang, P. Xie, et al., The tunable negative permittivity and negative permeability of percolative Fe/Al2O3 composites in radio frequency range, Appl Phys Lett, 106(2015)172902.

DOI: 10.1063/1.4918998

Google Scholar

[4] M. Chen, X. Wang, Z. Zhang, K. Sun, C. Cheng, F. Dang, Negative permittivity behavior and magnetic properties of C/YIG composites at radio frequency, Mater. Design, 97(2016)454-458.

DOI: 10.1016/j.matdes.2016.02.119

Google Scholar

[5] M. Chen, M. Gao, F. Dang, N. Wang, B. Zhang, S. Pan, Tunable negative permittivity and permeability in FeNiMo/Al2O3 composites prepared by hot-pressing sintering, Ceram. Int., 42(2016)6444-6449.

DOI: 10.1016/j.ceramint.2016.01.072

Google Scholar

[6] B. Huang, C. Li, J. Wang, Template synthesis and magnetic properties of highly aligned barium hexaferrite (BaFe12O19) nanofibers, J. Magn. Magn. Mater., 335(2013)28-31.

DOI: 10.1016/j.jmmm.2013.01.032

Google Scholar

[7] A.N. Lagarkov, K.N. Rozanov, High-frequency behavior of magnetic composites, J. Magn. Magn. Mater., 321(2009)2082-(2092).

DOI: 10.1016/j.jmmm.2008.08.099

Google Scholar

[8] R.C. Pullar, Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics, Prog. Mater. Sci., 57(2012)1191-1334.

DOI: 10.1016/j.pmatsci.2012.04.001

Google Scholar

[9] G. -F. Liu, R. -H. Fan, Z. -D. Zhang, J. Li, M. Chen, Q.Q. Li, et al., Magnetic properties and special morphology of barium ferrite via electrospinning, Rare Metals, 1-5.

DOI: 10.1007/s12598-015-0591-5

Google Scholar

[10] G. -f. Liu, Z. -d. Zhang, F. Dang, C. -b. Cheng, C. -x. Hou, Formation and characterization of magnetic barium ferrite hollow fibers with low coercivity via co-electrospun, J. Magn. Magn. Mater., 412(2016)55-62.

DOI: 10.1016/j.jmmm.2016.03.081

Google Scholar

[11] V.G. Harris, A. Geiler, Y. Chen, S.D. Yoon, M. Wu, A. Yang, et al., Recent advances in processing and applications of microwave ferrites, J. Magn. Magn. Mater., 321(2009)2035-(2047).

Google Scholar

[12] J. Liu, P. Liu, X. Zhang, D. Pan, P. Zhang, M. Zhang, Synthesis and properties of single domain sphere-shaped barium hexa-ferrite nano powders via an ultrasonic-assisted co-precipitation route, Ultrason. sonochem., 23(2015)46-52.

DOI: 10.1016/j.ultsonch.2014.08.001

Google Scholar

[13] S. Jacobo, C. Domingo-Pascual, R. Rodriguez-Clemente, M. Blesa, Synthesis of ultrafine particles of barium ferrite by chemical coprecipitation, Journal of Mater. Sci., 32(1997)1025-1028.

DOI: 10.1023/a:1018582423406

Google Scholar

[14] D. Lisjak, M. Drofenik, The low-temperature formation of barium hexaferrites, J. Eur. Ceram. Soc., 26(2006)3681-3686.

DOI: 10.1016/j.jeurceramsoc.2005.12.014

Google Scholar

[15] S.E. Jacobo, L. Civale, M.A. Blesa, Evolution of the magnetic properties during the thermal treatment of barium hexaferrite precursors obtained by coprecipitation from barium ferrate (VI) solutions, J. Magn. Magn. Mater., 260(2003)37-41.

DOI: 10.1016/s0304-8853(01)00924-6

Google Scholar

[16] S. Woltz, R. Hiergeist, P. Görnert, C. Rüssel, Magnetite nanoparticles prepared by the glass crystallization method and their physical properties, J. Magn. Magn. Mater., 298(2006)7-13.

DOI: 10.1016/j.jmmm.2005.02.067

Google Scholar

[17] P. Kazin, L. Trusov, D. Zaitsev, Y.D. Tret'yakov, Glass crystallization synthesis of ultrafine hexagonal M-type ferrites: Particle morphology and magnetic characteristics, Russ. J. Inorg. Chem., 54(2009)2081-(2090).

DOI: 10.1134/s0036023609140010

Google Scholar

[18] T. Koutzarova, S. Kolev, C. Ghelev, I. Nedkov, B. Vertruen, R. Cloots, et al., Differences in the structural and magnetic properties of nanosized barium hexaferrite powders prepared by single and double microemulsion techniques, Journal of Alloys and Compounds, 579(2013).

DOI: 10.1016/j.jallcom.2013.06.049

Google Scholar

[19] Y. Meng, M. He, Q. Zeng, D. Jiao, S. Shukla, R. Ramanujan, et al., Synthesis of barium ferrite ultrafine powders by a sol–gel combustion method using glycine gels, J. Alloy. Compd., 583(2014)220-225.

DOI: 10.1016/j.jallcom.2013.08.156

Google Scholar

[20] A. Mali, A. Ataie, Structural characterization of nano-crystalline BaFe12O19 powders synthesized by sol–gel combustion route, Scripta Mater., 53(2005)1065-1070.

DOI: 10.1016/j.scriptamat.2005.06.037

Google Scholar

[21] M. Chen, R. Fan, G.F. Liu, X.A. Wang, K. Sun. Magnetic Properties of Barium Ferrite Prepared by Hydrothermal Synthesis. Key Engineering Materials: Trans Tech Publ; 2015. pp.178-181.

DOI: 10.4028/www.scientific.net/kem.655.178

Google Scholar

[22] D. Primc, D. Makovec, D. Lisjak, M. Drofenik, Hydrothermal synthesis of ultrafine barium hexaferrite nanoparticles and the preparation of their stable suspensions, Nanotechnology, 20(2009)315605.

DOI: 10.1088/0957-4484/20/31/315605

Google Scholar

[23] V. Harikrishnan, P. Saravanan, R.E. Vizhi, D.R. Babu, V. Vinod, P. Kejzlar, et al., Effect of annealing temperature on the structural and magnetic properties of CTAB-capped SrFe12O19 platelets, J. Magn. Magn. Mater., 401(2016)775-783.

DOI: 10.1016/j.jmmm.2015.10.122

Google Scholar