[1]
L. Kong, Z. Li, L. Liu, R. Huang, M. Abshinova, Z. Yang, Recent progress in some composite materials and structures for specific electromagnetic applications, Int. Mater. Rev., 58(2013)203-259.
DOI: 10.1179/1743280412y.0000000011
Google Scholar
[2]
M. Chen, R. -h. Fan, M. Gao, S. -b. Pan, M. -x. Yu, Z. -d. Zhang, Negative permittivity behavior in Fe50Ni50/Al2O3 magnetic composite near percolation threshold, J. Magn. Magn. Mater., 381(2015)105-108.
DOI: 10.1016/j.jmmm.2014.12.067
Google Scholar
[3]
K. Sun, R. Fan, Z. Zhang, K. Yan, X. Zhang, P. Xie, et al., The tunable negative permittivity and negative permeability of percolative Fe/Al2O3 composites in radio frequency range, Appl Phys Lett, 106(2015)172902.
DOI: 10.1063/1.4918998
Google Scholar
[4]
M. Chen, X. Wang, Z. Zhang, K. Sun, C. Cheng, F. Dang, Negative permittivity behavior and magnetic properties of C/YIG composites at radio frequency, Mater. Design, 97(2016)454-458.
DOI: 10.1016/j.matdes.2016.02.119
Google Scholar
[5]
M. Chen, M. Gao, F. Dang, N. Wang, B. Zhang, S. Pan, Tunable negative permittivity and permeability in FeNiMo/Al2O3 composites prepared by hot-pressing sintering, Ceram. Int., 42(2016)6444-6449.
DOI: 10.1016/j.ceramint.2016.01.072
Google Scholar
[6]
B. Huang, C. Li, J. Wang, Template synthesis and magnetic properties of highly aligned barium hexaferrite (BaFe12O19) nanofibers, J. Magn. Magn. Mater., 335(2013)28-31.
DOI: 10.1016/j.jmmm.2013.01.032
Google Scholar
[7]
A.N. Lagarkov, K.N. Rozanov, High-frequency behavior of magnetic composites, J. Magn. Magn. Mater., 321(2009)2082-(2092).
DOI: 10.1016/j.jmmm.2008.08.099
Google Scholar
[8]
R.C. Pullar, Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics, Prog. Mater. Sci., 57(2012)1191-1334.
DOI: 10.1016/j.pmatsci.2012.04.001
Google Scholar
[9]
G. -F. Liu, R. -H. Fan, Z. -D. Zhang, J. Li, M. Chen, Q.Q. Li, et al., Magnetic properties and special morphology of barium ferrite via electrospinning, Rare Metals, 1-5.
DOI: 10.1007/s12598-015-0591-5
Google Scholar
[10]
G. -f. Liu, Z. -d. Zhang, F. Dang, C. -b. Cheng, C. -x. Hou, Formation and characterization of magnetic barium ferrite hollow fibers with low coercivity via co-electrospun, J. Magn. Magn. Mater., 412(2016)55-62.
DOI: 10.1016/j.jmmm.2016.03.081
Google Scholar
[11]
V.G. Harris, A. Geiler, Y. Chen, S.D. Yoon, M. Wu, A. Yang, et al., Recent advances in processing and applications of microwave ferrites, J. Magn. Magn. Mater., 321(2009)2035-(2047).
Google Scholar
[12]
J. Liu, P. Liu, X. Zhang, D. Pan, P. Zhang, M. Zhang, Synthesis and properties of single domain sphere-shaped barium hexa-ferrite nano powders via an ultrasonic-assisted co-precipitation route, Ultrason. sonochem., 23(2015)46-52.
DOI: 10.1016/j.ultsonch.2014.08.001
Google Scholar
[13]
S. Jacobo, C. Domingo-Pascual, R. Rodriguez-Clemente, M. Blesa, Synthesis of ultrafine particles of barium ferrite by chemical coprecipitation, Journal of Mater. Sci., 32(1997)1025-1028.
DOI: 10.1023/a:1018582423406
Google Scholar
[14]
D. Lisjak, M. Drofenik, The low-temperature formation of barium hexaferrites, J. Eur. Ceram. Soc., 26(2006)3681-3686.
DOI: 10.1016/j.jeurceramsoc.2005.12.014
Google Scholar
[15]
S.E. Jacobo, L. Civale, M.A. Blesa, Evolution of the magnetic properties during the thermal treatment of barium hexaferrite precursors obtained by coprecipitation from barium ferrate (VI) solutions, J. Magn. Magn. Mater., 260(2003)37-41.
DOI: 10.1016/s0304-8853(01)00924-6
Google Scholar
[16]
S. Woltz, R. Hiergeist, P. Görnert, C. Rüssel, Magnetite nanoparticles prepared by the glass crystallization method and their physical properties, J. Magn. Magn. Mater., 298(2006)7-13.
DOI: 10.1016/j.jmmm.2005.02.067
Google Scholar
[17]
P. Kazin, L. Trusov, D. Zaitsev, Y.D. Tret'yakov, Glass crystallization synthesis of ultrafine hexagonal M-type ferrites: Particle morphology and magnetic characteristics, Russ. J. Inorg. Chem., 54(2009)2081-(2090).
DOI: 10.1134/s0036023609140010
Google Scholar
[18]
T. Koutzarova, S. Kolev, C. Ghelev, I. Nedkov, B. Vertruen, R. Cloots, et al., Differences in the structural and magnetic properties of nanosized barium hexaferrite powders prepared by single and double microemulsion techniques, Journal of Alloys and Compounds, 579(2013).
DOI: 10.1016/j.jallcom.2013.06.049
Google Scholar
[19]
Y. Meng, M. He, Q. Zeng, D. Jiao, S. Shukla, R. Ramanujan, et al., Synthesis of barium ferrite ultrafine powders by a sol–gel combustion method using glycine gels, J. Alloy. Compd., 583(2014)220-225.
DOI: 10.1016/j.jallcom.2013.08.156
Google Scholar
[20]
A. Mali, A. Ataie, Structural characterization of nano-crystalline BaFe12O19 powders synthesized by sol–gel combustion route, Scripta Mater., 53(2005)1065-1070.
DOI: 10.1016/j.scriptamat.2005.06.037
Google Scholar
[21]
M. Chen, R. Fan, G.F. Liu, X.A. Wang, K. Sun. Magnetic Properties of Barium Ferrite Prepared by Hydrothermal Synthesis. Key Engineering Materials: Trans Tech Publ; 2015. pp.178-181.
DOI: 10.4028/www.scientific.net/kem.655.178
Google Scholar
[22]
D. Primc, D. Makovec, D. Lisjak, M. Drofenik, Hydrothermal synthesis of ultrafine barium hexaferrite nanoparticles and the preparation of their stable suspensions, Nanotechnology, 20(2009)315605.
DOI: 10.1088/0957-4484/20/31/315605
Google Scholar
[23]
V. Harikrishnan, P. Saravanan, R.E. Vizhi, D.R. Babu, V. Vinod, P. Kejzlar, et al., Effect of annealing temperature on the structural and magnetic properties of CTAB-capped SrFe12O19 platelets, J. Magn. Magn. Mater., 401(2016)775-783.
DOI: 10.1016/j.jmmm.2015.10.122
Google Scholar