Synthesis and Thermoelectric Properties of ZnO/Cu2SnSe3 Composites

Article Preview

Abstract:

Addition of nanoparticles into bulk materials is an efficient way to enhance the performance of thermoelectric materials. The nanoZnO particles were introduced into the Cu2SnSe3 matrix by ball milling method, and the ZnO/Cu2SnSe3 composites were fabricated by spark plasma sintering (SPS) technology. The phase constitution and microstructure were characterized by XRD, FESEM. The effects of nanoZnO particles on the electrical and thermal transport were investigated and discussed. The diffraction spectra of all composites samples well corresponded to that of the matrix diffraction plane. The nanoZnO agglomerated into irregular clusters with the size lager than 200nm and distributed on the grain boundary or the surface of Cu2SnSe3 grain, which significantly reduce the lattice thermal conductivity by scattering middle-long wavelength phonons. The optimal ZT value was obtained from the composite sample of 2.4 vol. % ZnO, which is 1.3 times as large as that of the Cu2SnSe3 matrix.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1661-1668

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H.J. Goldsmid, Electronic refrigeration, Int. J. Refrig. 11 (1968) 345.

Google Scholar

[2] A.F. Ioffe, L.S. Stil'bans, E.K. Iordanishvili, Semiconductor thermoelements and thermoelectric cooling, Phys. Today. 12 (1959) 42.

DOI: 10.1063/1.3060810

Google Scholar

[3] H. Zhu, C. Xiao, H. Cheng, Magnetocaloric effects in a freestanding and flexible graphene-based superlattice synthesized with a spatially confined reaction, Nat. commun. 5 (2014) 3960-3960.

DOI: 10.1038/ncomms4960

Google Scholar

[4] J. Xie, X. Sun, N. Zhang, Layer-by-layer β-Ni(OH)2/graphene nanohybrids for ultraflexible all-solid-state thin-film supercapacitors with high electrochemical performance, Nano. Energy. 2 (2013) 65-74.

DOI: 10.1016/j.nanoen.2012.07.016

Google Scholar

[5] J. Feng, L. Peng, C. Wu, Giant moisture responsiveness of VS2 ultrathin nanosheets for novel touchless positioning interface, Adv. Mater. 24 (2012)1969-74.

DOI: 10.1002/adma.201290085

Google Scholar

[6] Y. Sun, H. Cheng, S. Gao, Freestanding Tin Disulfide single-layers realizing efficient visible-light water splitting, Angew. Chem. Int. Edit. 51(2012) 8727–8731.

DOI: 10.1002/anie.201204675

Google Scholar

[7] Y. Sun, Z. Sun, S. Gao, Fabrication of flexible and freestanding zinc chalcogenide single layers, Nat. Commun. 3 (2012) 1057-1057.

Google Scholar

[8] X. Zhang, X. Xie, H. Wang, Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging, J. Am. Chem. Soc. 135 (2012) 18-21.

DOI: 10.1021/ja308249k

Google Scholar

[9] D. O. Dumcenco, H. Kobayashi, Z Liu, Visualization and quantification of transition metal atomic mixing in Mo1-xWxS2 single layers, Nat. Commun. 4 (2013) 1351-1351.

DOI: 10.1038/ncomms2351

Google Scholar

[10] K. F. Hsu, S. Loo, F. Guo, Cubic AgPbmSbTe2+m: Bulk thermoelectric materials with high figure of merit, Science. 303 (2004) 818-821.

DOI: 10.1002/chin.200417240

Google Scholar

[11] P. F. P. Poudeu, J. D'Angelo, A. D. Downey, High thermoelectric figure of merit and nanostructuring in bulk p-type Na1−xPbmSbyTem, Angew. Chem. Int. Edit. 118(2006) 3919-3923.

DOI: 10.1002/ange.200600865

Google Scholar

[12] J. P. Heremans, V. Jovovic, E. S. Toberer, Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states, Science. 321 (2008) 554-557.

DOI: 10.1126/science.1159725

Google Scholar

[13] L. Cai, J. He, Q. Liu, Vacancy-induced ferromagnetism of MoS2 nanosheets, J. Am. Chem. Soc. 137 (2015) 2622-2627.

Google Scholar

[14] Z. Li, C. Xiao, S. Fan, Dual-vacancies: an effective strategy realizing synergistic optimization of thermoelectric property in BiCuSeO, J. Am. Chem. Soc. 137 (2015) 6587-6593.

DOI: 10.1021/jacs.5b01863

Google Scholar

[15] H. Wang, J. Zhang, X. Hang, Half-metallicity in single-layered manganese dioxide nanosheets by defect engineering, Angew. Chem. Int. Edit. 127 (2015) 1211-1215.

DOI: 10.1002/ange.201410031

Google Scholar

[16] W. Kim, J. Zide, A. Gossard, Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors, Phys. Rev. Lett. 96 (2006) 045901.

DOI: 10.1103/physrevlett.96.045901

Google Scholar

[17] S. V. Faleev, F. Léonard, Theory of enhancement of thermoelectric properties of materials with nanoinclusions, Phys. Rev. B. 77 (2008) 214304.

DOI: 10.1103/physrevb.77.214304

Google Scholar

[18] B. Liang, Z. Song, M. Wang, Fabrication and thermoelectric properties of graphene/Bi2Te3 Composite Materials, J. Nano. Mater. 2013 (2013) 6.

Google Scholar

[19] K. T. Kim, S. Y. Choi, E. H. Shin, The influence of CNTs on the thermoelectric properties of a CNT/Bi2Te3 composite, Carbon. 52 (2013) 541-549.

DOI: 10.1016/j.carbon.2012.10.008

Google Scholar

[20] H. Chen, C. Yang, H. Liu, Thermoelectric properties of CuInTe2/graphene composites, Crystengcomm. 15 (2013) 6648-6651.

DOI: 10.1039/c3ce40334c

Google Scholar

[21] J. H. Kim, Y. J. Song, J. S. Rhyee, Small-polaron transport and thermoelectric properties of the misfit-layer composite (BiSe)109TaSe2/TaSe2, Phys. Rev. B. 87 (2013) 2189-2198.

Google Scholar

[22] J. Yang, H. L. Yip, A. K. Y. Jen, Rational design of advanced thermoelectric materials, Adv. Energy. Mater. 3 (2013) 549-565.

DOI: 10.1002/aenm.201200514

Google Scholar

[23] Y. Zhai, Q. Zhang, J. Jiang, Thermoelectric performance of the ordered In4Se3–In composite constructed by monotectic solidification, J. Mater. Chem A. 1 (2013) 8844-8847.

DOI: 10.1039/c3ta01599h

Google Scholar

[24] X. Y. Shi, F. Q. Huang, M. L. Liu, Thermoelectric properties of tetrahedrally bonded wide-gap stannite compounds Cu2ZnSn1-xInxSe4, Appl. Phys. Lett. 94 (2009) 122103.

DOI: 10.1063/1.3103604

Google Scholar

[25] M. L. Liu, I. W. Chen, F. Q. Huang, Improved Thermoelectric Properties of Cu-Doped Quaternary Chalcogenides of Cu2CdSnSe4, Adv. Mater. 21 (2009) 3808-3812.

DOI: 10.1002/adma.200900409

Google Scholar

[26] Y. L. Pei, Y. Liu, Electrical and thermal transport properties of Pb-based chalcogenides: PbTe, PbSe, and PbS, J. Alloy. Compd. 514 (2012) 40-44.

DOI: 10.1016/j.jallcom.2011.10.036

Google Scholar