[1]
H.J. Goldsmid, Electronic refrigeration, Int. J. Refrig. 11 (1968) 345.
Google Scholar
[2]
A.F. Ioffe, L.S. Stil'bans, E.K. Iordanishvili, Semiconductor thermoelements and thermoelectric cooling, Phys. Today. 12 (1959) 42.
DOI: 10.1063/1.3060810
Google Scholar
[3]
H. Zhu, C. Xiao, H. Cheng, Magnetocaloric effects in a freestanding and flexible graphene-based superlattice synthesized with a spatially confined reaction, Nat. commun. 5 (2014) 3960-3960.
DOI: 10.1038/ncomms4960
Google Scholar
[4]
J. Xie, X. Sun, N. Zhang, Layer-by-layer β-Ni(OH)2/graphene nanohybrids for ultraflexible all-solid-state thin-film supercapacitors with high electrochemical performance, Nano. Energy. 2 (2013) 65-74.
DOI: 10.1016/j.nanoen.2012.07.016
Google Scholar
[5]
J. Feng, L. Peng, C. Wu, Giant moisture responsiveness of VS2 ultrathin nanosheets for novel touchless positioning interface, Adv. Mater. 24 (2012)1969-74.
DOI: 10.1002/adma.201290085
Google Scholar
[6]
Y. Sun, H. Cheng, S. Gao, Freestanding Tin Disulfide single-layers realizing efficient visible-light water splitting, Angew. Chem. Int. Edit. 51(2012) 8727–8731.
DOI: 10.1002/anie.201204675
Google Scholar
[7]
Y. Sun, Z. Sun, S. Gao, Fabrication of flexible and freestanding zinc chalcogenide single layers, Nat. Commun. 3 (2012) 1057-1057.
Google Scholar
[8]
X. Zhang, X. Xie, H. Wang, Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging, J. Am. Chem. Soc. 135 (2012) 18-21.
DOI: 10.1021/ja308249k
Google Scholar
[9]
D. O. Dumcenco, H. Kobayashi, Z Liu, Visualization and quantification of transition metal atomic mixing in Mo1-xWxS2 single layers, Nat. Commun. 4 (2013) 1351-1351.
DOI: 10.1038/ncomms2351
Google Scholar
[10]
K. F. Hsu, S. Loo, F. Guo, Cubic AgPbmSbTe2+m: Bulk thermoelectric materials with high figure of merit, Science. 303 (2004) 818-821.
DOI: 10.1002/chin.200417240
Google Scholar
[11]
P. F. P. Poudeu, J. D'Angelo, A. D. Downey, High thermoelectric figure of merit and nanostructuring in bulk p-type Na1−xPbmSbyTem, Angew. Chem. Int. Edit. 118(2006) 3919-3923.
DOI: 10.1002/ange.200600865
Google Scholar
[12]
J. P. Heremans, V. Jovovic, E. S. Toberer, Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states, Science. 321 (2008) 554-557.
DOI: 10.1126/science.1159725
Google Scholar
[13]
L. Cai, J. He, Q. Liu, Vacancy-induced ferromagnetism of MoS2 nanosheets, J. Am. Chem. Soc. 137 (2015) 2622-2627.
Google Scholar
[14]
Z. Li, C. Xiao, S. Fan, Dual-vacancies: an effective strategy realizing synergistic optimization of thermoelectric property in BiCuSeO, J. Am. Chem. Soc. 137 (2015) 6587-6593.
DOI: 10.1021/jacs.5b01863
Google Scholar
[15]
H. Wang, J. Zhang, X. Hang, Half-metallicity in single-layered manganese dioxide nanosheets by defect engineering, Angew. Chem. Int. Edit. 127 (2015) 1211-1215.
DOI: 10.1002/ange.201410031
Google Scholar
[16]
W. Kim, J. Zide, A. Gossard, Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors, Phys. Rev. Lett. 96 (2006) 045901.
DOI: 10.1103/physrevlett.96.045901
Google Scholar
[17]
S. V. Faleev, F. Léonard, Theory of enhancement of thermoelectric properties of materials with nanoinclusions, Phys. Rev. B. 77 (2008) 214304.
DOI: 10.1103/physrevb.77.214304
Google Scholar
[18]
B. Liang, Z. Song, M. Wang, Fabrication and thermoelectric properties of graphene/Bi2Te3 Composite Materials, J. Nano. Mater. 2013 (2013) 6.
Google Scholar
[19]
K. T. Kim, S. Y. Choi, E. H. Shin, The influence of CNTs on the thermoelectric properties of a CNT/Bi2Te3 composite, Carbon. 52 (2013) 541-549.
DOI: 10.1016/j.carbon.2012.10.008
Google Scholar
[20]
H. Chen, C. Yang, H. Liu, Thermoelectric properties of CuInTe2/graphene composites, Crystengcomm. 15 (2013) 6648-6651.
DOI: 10.1039/c3ce40334c
Google Scholar
[21]
J. H. Kim, Y. J. Song, J. S. Rhyee, Small-polaron transport and thermoelectric properties of the misfit-layer composite (BiSe)109TaSe2/TaSe2, Phys. Rev. B. 87 (2013) 2189-2198.
Google Scholar
[22]
J. Yang, H. L. Yip, A. K. Y. Jen, Rational design of advanced thermoelectric materials, Adv. Energy. Mater. 3 (2013) 549-565.
DOI: 10.1002/aenm.201200514
Google Scholar
[23]
Y. Zhai, Q. Zhang, J. Jiang, Thermoelectric performance of the ordered In4Se3–In composite constructed by monotectic solidification, J. Mater. Chem A. 1 (2013) 8844-8847.
DOI: 10.1039/c3ta01599h
Google Scholar
[24]
X. Y. Shi, F. Q. Huang, M. L. Liu, Thermoelectric properties of tetrahedrally bonded wide-gap stannite compounds Cu2ZnSn1-xInxSe4, Appl. Phys. Lett. 94 (2009) 122103.
DOI: 10.1063/1.3103604
Google Scholar
[25]
M. L. Liu, I. W. Chen, F. Q. Huang, Improved Thermoelectric Properties of Cu-Doped Quaternary Chalcogenides of Cu2CdSnSe4, Adv. Mater. 21 (2009) 3808-3812.
DOI: 10.1002/adma.200900409
Google Scholar
[26]
Y. L. Pei, Y. Liu, Electrical and thermal transport properties of Pb-based chalcogenides: PbTe, PbSe, and PbS, J. Alloy. Compd. 514 (2012) 40-44.
DOI: 10.1016/j.jallcom.2011.10.036
Google Scholar