[1]
Y. Doi,Y. Harada,Y. Hinatsu, Crystals tructures and magnetic properties of fluorite-related oxides Ln3NbO7 (Ln=lanthanides), J. Solid State Chem. 182(2009) 709-715.
DOI: 10.1016/j.jssc.2008.12.012
Google Scholar
[2]
M. Wakeshima, Y. Hinatsu, Magnetic properties and structural transitions of orthorhombic fluorite-related compounds Ln3MO7 (Ln=rare earths, M=transition metals), J. Solid State Chem. 183 (11) (2010) 2681-2688.
DOI: 10.1016/j.jssc.2010.09.005
Google Scholar
[3]
L. Cai, J.C. Nino, Structure and dielectric properties of Ln3NbO7 (Ln=Nd, Gd, Dy, Er, YbandY), J. Euro. Ceram. Soc. 27(2007) 3971-3976.
DOI: 10.1016/j.jeurceramsoc.2007.02.077
Google Scholar
[4]
R. Abe, M. Higashi, K. Sayama, Y. Abe, H. Sugihara, Photocatalytic activity of R3MO7 and R2Ti2O7 (R=Y, Gd, La; M=Nb, Ta) for water splitting into H2 and O2, J. Phys. Chem. B 110 (2006) 2219-2226.
DOI: 10.1002/chin.200616023
Google Scholar
[5]
J. Zhao, Q. He, B. Yao, Q. Zhang, T. Zhang, Q. Wang, X. Han, Hydrothermal synthesis of Y3NbO7 nanowires for the photocatalytic degradation of omeprazole sodium, Ceram. Int. 41 (6) (2015) 7669-7676.
DOI: 10.1016/j.ceramint.2015.02.095
Google Scholar
[6]
M.P. van Dijk, K.J. de Vries, A.J. Burggraaf, Oxygen ion and mixed conductivity in compounds with the fluorite and pyrochlore structure, Solid State Ionics 9-10 (1983) 913-919.
DOI: 10.1016/0167-2738(83)90110-8
Google Scholar
[7]
D. Marrocchelli, P.A. Madden, S.T. Norberg, S. Hull, Cation composition effects on oxide conductivity in the Zr2Y2O7-Y3NbO7 system, J. Phys.: Condens. Matter 21 (40) (2009) 405403/1-12.
DOI: 10.1088/0953-8984/21/40/405403
Google Scholar
[8]
A. Chesnaud, M.D. Braida, S. Estrade, F. Peiro, A. Tarancon, A. Morata, G. Dezanneau, High-temperature anion and proton conduction in RE3NbO7 ( RE=La, Gd, Y, Yb, Lu) compounds, J. Eur. Ceram. Soc. 35 (2015) 3051-3061.
DOI: 10.1016/j.jeurceramsoc.2015.04.014
Google Scholar
[9]
A. Walasek, E. Zych, J. Zhang, S. Wang, Synthesis, morphology and spectroscopy of cubic Y3NbO7: Er, J. Lumin. 127 (2) (2007) 523-530.
DOI: 10.1016/j.jlumin.2007.02.063
Google Scholar
[10]
K. Y. Kim, A. Durand, J. M. Heintz, A. Veillere, V. Jubera, Spectral evolution of Eu3+ doped Y3NbO7 niobate induced by temperature, J. Solid State Chem. 235 (2006) 169-174.
DOI: 10.1016/j.jssc.2015.12.023
Google Scholar
[11]
L. Q. An, A. Ito, T. Goto, Fabrication of transparent Lu3NbO7 by spark plasma sintering, Mater. Lett. 65 (2011) 3167-3169.
DOI: 10.1016/j.matlet.2011.07.010
Google Scholar
[12]
L. Q. An, A. Ito, T. Goto, Transparent Lu3NbO7 bodies prepared by reactive spark plasma sintering and their optical and mechanical properties, Ceram. Int. 39 (2013) 383-387.
DOI: 10.1016/j.ceramint.2012.06.038
Google Scholar
[13]
S. Kumar, K. B. R. Varma, Relaxor behavior of BaBi4Ti3Fe0. 5Nb0. 5O15 ceramics, Solid State Commun. 147 (2008) 457-460.
DOI: 10.1016/j.ssc.2008.07.008
Google Scholar
[14]
S. Mahajan, D. Haridas, S. T. Ali, N. R. Munirathnam, K. Sreenivas, O. P. Thakur, C. Prakash, Investigation of conduction and relaxation phenomena in BaZrxTi1-xO3 (x=0. 05) by impedance spectroscopy, Phy. B 451 (2014) 114-119.
DOI: 10.1016/j.physb.2014.06.035
Google Scholar
[15]
J.T.S. Irvine, D.C. Sinclair, A. R. West, Electroceramics: Characterization by impedance spectroscopy, Adv. Mater. 2 (1990) 132-138.
DOI: 10.1002/adma.19900020304
Google Scholar
[16]
A. Chesnaud, M. D. Braida, S. Estrade ,F. Peiro, A. Tarancon, A. Morata, G Dezanneau, High-temperature anion and proton conduction in RE3NbO7 (RE=La, Gd, Y, Yb, Lu) compounds, J. Eur. Ceram. Soc. 35 (2015) 3051-3061.
DOI: 10.1016/j.jeurceramsoc.2015.04.014
Google Scholar
[17]
A. V. Shlyakhtina, J. C. C. Abrantes, L. L. Larina, L. G. Shcherbakova, Synthesis and conductivity of Yb2Ti2O7 nanoceramics, Solid State Ionics 176 (2005) 1653-1656.
DOI: 10.1016/j.ssi.2005.04.038
Google Scholar