Dielectric Performance of (Pb1-xSrx)Nb2O6-NaNbO3 Thin Film Materials System: Substitution Effects

Article Preview

Abstract:

(Pb1-xSrx)Nb2O6-NaNbO3 (PSNN) dielectric thin films, x changed from 0.4 to 0.6, were deposited by pulsed laser deposition (PLD) technology on p+-Si substrate. Post-annealing was performed on the dielectric thin films at 800oC in oxygen atmosphere for 10 minutes. The Sr-composition dependence of the dielectric performance in this thin film materials system was investigated. The results indicated that dielectric constant changing with Sr-composition in the PSNN thin films showed the shape of a parabola, resulting from the morphotropic phase boundary (MPB) effect caused by the existence of both orthorhombic and tetragonal tungsten bronze phases. The maximized dielectric constant of PSNN was 58 and the leakage current density was about 2.485×10-9 A·cm-2 by calculated at-1 V in 1 kHz. The breakdown field strength reached 220 kV/mm of the developed PSNN thin film system, which is promising in energy storage systems application.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1699-1704

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Liu, F. Li, Advanced materials for energy storage, Adv. Mater., 2010, 22(8): 28-62.

Google Scholar

[2] S. A. Sherrill, P. Banerjee, High to ultra-high power electrical energy storage, Phys. Chem. Chem. Phys., 2011, 13(46): 20714-20723.

DOI: 10.1039/c1cp22659b

Google Scholar

[3] G. J. Zhang, J. X. Liao, The structure and dielectric properties of Y doping (Ba0. 6Sr0. 4)0. 8TiO3 film, Rare Met. Mat. Eng. 2013, 42(6): 87-89.

Google Scholar

[4] K. Yu, H. Wang, Enhanced dielectric properties of BaTiO3/poly (vinylidene fluoride) nano composites for energy storage applications, J. Appl. Phys. 2013, 113(3): 034105.

DOI: 10.1063/1.4776740

Google Scholar

[5] T. Sa, N. Qin, Structure and improved electrical properties of Pr-doped PbZrO3 antiferroelectric thin films with (111) preferential orientation, Mater. Chem. Phys. 2013, 139(2): 511-514.

DOI: 10.1016/j.matchemphys.2013.01.050

Google Scholar

[6] X. Hao, J. Zhai, Improved energy storage performance and fatigue endurance of Sr‐doped PbZrO3 anti ferroelectric thin films, J. Am. Ceram. Soc. 2009, 92(5): 1133-1135.

DOI: 10.1111/j.1551-2916.2009.03015.x

Google Scholar

[7] L. Wang, Q. M. Zhang, Structural characteristics and dielectric properties of glass-ceramic Nano composites of (Pb, Sr)Nb2O6-NaNbO3-SiO2, Trans. Nonferrous Met. Soc. China. 2010, 20(8): 1434-1438.

DOI: 10.1016/s1003-6326(09)60317-4

Google Scholar

[8] H. Zhou, Q. M. Zhang, Effect of Glass-Phase Design on the Dielectric Properties of PbO-SrO-Na2O-Nb2O5-SiO2 Glass–Ceramic, J. Electron. Mater. 2015, 44(11): 4053-4057.

DOI: 10.1007/s11664-015-4009-9

Google Scholar

[9] L. Wang, J. Du, Dielectric properties of nano-composites in SrNb2O6-NaNbO3-SiO2 system glass-ceramic, Chin. J. Rare Met. 2010, (3).

Google Scholar

[10] D. F. Han, Q. M. Zhang, MNb206-NaNb03-Si02 (M=Pb; Ba; Sr) system structure and dielectric properties of nano composites glass ceramic, Chin. J. Rare. Met. 2012, 36(1): 109-109.

Google Scholar

[11] D. F. Han, Q. M. Zhang, Optimization of energy storage density in ANb2O6-NaNbO3-SiO2 (A=[(1−x)Pb, xSr]) nanostructured glass–ceramic dielectrics, Ceram. Int. 2012, 38(8): 6903-6906.

DOI: 10.1016/j.ceramint.2012.04.087

Google Scholar

[12] D. F. Han, Q. M. Zhang, Glass-ceramic nano composites in the [(1−x)PbO–xBaO]–Na2O–Nb2O5–SiO2 system: crystallization and dielectric performance, Solid State Sci. 2012, 14(6): 661-667.

DOI: 10.1016/j.solidstatesciences.2012.03.009

Google Scholar

[13] F. M. Pontes, D. S. L. Pontes, Influence of Ca concentration on the electric, morphological, and structural properties of (Pb, Ca)TiO3 thin films, J. appl. Phys. 2002: 6650-6655.

DOI: 10.1063/1.1470250

Google Scholar