Fabrication of High Purity MgO Ceramic Targets by Hot-Isostatic Pressing

Article Preview

Abstract:

MgO ceramics with the purity higher than 99.99% have been fabricated by a hot-isostatic press (HIP) technique of hot-pressed MgO compacts using nanometer MgO powder with an average particle size of 300 nm. The densification and grain growth behavior of MgO compacts during HIP process were investigated. The results indicate that the high-purity MgO ceramic with an average grain size of 9.76 μm and a density approximately to the theoretical density can be obtained by HIP method at 1350°C and 150 MPa for 60 min. HIP can significantly enhance the densification process of MgO compacts and cause a slightly change of grain size distribution.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1693-1698

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Sankha S. Mukherjee, Feiming Bai, David MacMahon, et al., Crystallization and grain growth behavior of CoFeB and MgO layers in multilayer magnetic tunnel junctions, J. Appl. Phys., 106(3) (2009) 033906-033906-7.

DOI: 10.1063/1.3176501

Google Scholar

[2] J. Sarkar, Sputtering Materials for VLSI and Thin Film Devices, William Andrew, Oxford, (2010).

Google Scholar

[3] R. Fernandez, N. Amos, C. Zhang, et al., Optimization of L10-FePt/MgO/CrRu thin films for next-generation magnetic recording media, Thin Solid Films, 519(22) (2011) 8053-8057.

DOI: 10.1016/j.tsf.2011.06.098

Google Scholar

[4] Q. Hao, G. Xiao, Giant Spin Hall Effect and Switching Induced by Spin-Transfer Torque in a W /Co40Fe40B20/MgO Structure with Perpendicular Magnetic Anisotropy, Phys. Rev. Appl., 3(3) (2015).

Google Scholar

[5] T. Kawaharamura, K. Mori, H. Orita, et al., Effect of O3 and Aqueous Ammonia on Crystallization of MgO Thin Film Grown by Mist Chemical Vapor Deposition, Jpn. J. Appl. Phys., 52(3) (2013) 1274-1277.

DOI: 10.7567/jjap.52.035501

Google Scholar

[6] S. Stuart, A. Sandin, J. Rowe, et al., Atomically-Smooth MgO films grown on Epitaxial Graphene by Pulsed Laser Deposition, Am. Phys. Soc., (2013).

Google Scholar

[7] J.M. Cho, K.H. Lee, C.I. Cheon, et al., Characterization of the biaxial textures of MgO thin films grown by E-beam evaporation, J. Eur. Ceram. Soc., 30(2) (2010) 481-484.

DOI: 10.1016/j.jeurceramsoc.2009.06.015

Google Scholar

[8] D. Caceres, I. Vergara, R. Gonzalez, Microstructural characterization of MgO thin films grown by radio-frequency sputtering. Target and substrate-temperature effect, J. Appl. Phys., 93(7) (2003) 4300-4305.

DOI: 10.1063/1.1558964

Google Scholar

[9] C.Y. Chou, Y.D. Yao, P.C. Kuo, et al., Microstructure and magnetoresistance of MgO thin film with CoFeB and CoFeC underlayers, J. Magn. Magn. Mater., 310(2) (2007) 2245-2247.

DOI: 10.1016/j.jmmm.2006.10.825

Google Scholar

[10] E.C. Park, H. Sakurai, Y. Kuromitsu, et al., U.S., Patent 10/682039, (2006).

Google Scholar

[11] M. Nagano, M. Takasu, Y. Arita, et al., U.S., Patent 12/811541, (2010).

Google Scholar

[12] S. Sano, Y. Nishimura, T. Watanabe, et al., J.P., Patent 066789, (2013).

Google Scholar

[13] T. Unno, T. Shibayama, U.S., Patent 284899, (2015).

Google Scholar

[14] K. Itatani, T. Tsujimoto, A. Kishimoto, Thermal and optical properties of transparent magnesium oxide ceramics fabricated by post hot-isostatic pressing, J. Eur. Ceram. Soc., 26(4) (2006) 639–645.

DOI: 10.1016/j.jeurceramsoc.2005.06.011

Google Scholar

[15] Y. Fang, D. Agrawal, G. Skandan, et al., Fabrication of translucent MgO ceramics using nanopowders, Mater. Lett., 58(5) (2004) 551-554.

DOI: 10.1016/s0167-577x(03)00560-3

Google Scholar