Microstructure and Distribution of Low Content Elements in AlNiCo 9

Article Preview

Abstract:

The microstructure and the chemistry distribution of AlNiCo 9 samples were characterized by the X-ray diffraction, magnetic force microscope, field emission scanning electron microscopy and transmission electron microscope. An interface of a high Al content was formed near the FeCo-rich phases with a size of about 30 nm. S elements mainly combined with Ti to form titanium sulfide bars with the length between 70-150 μm, while S elements was not confirmed in the nanostructured FeCo-rich phase and AlNi-rich phase. Si and Nb preferably existed in the NiAl-rich phase, and a higher content Nb near the Cu precipitate boundary was observed. Moreover, the magnetic domain structure of AlNiCo 9 was also studied.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1669-1674

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E.P. Wohlfarth, Ferromanetic Materials, North-Holland Publishing Company, vol. 3, chap. 3, (1982).

Google Scholar

[2] T. Liu, W. Li, M. Zhu, Z Guo, Effect of Co on the thermal stability and magnetic properties of AlNiCo8, Alloys. Appl. Phys. 115 (2014) 17A7511-17A7513.

Google Scholar

[3] S. M. Hao, K. Ishida, T. Nishizawa, Role of alloying elements in phase decomposition in AlNiCo magnet alloys, Metall. Mater. Trans. A. 160 (1985) 179-185.

DOI: 10.1007/bf02815299

Google Scholar

[4] M. Fan, Y. Liu, R. Jha, G.S. Dulikravich, J. Schwartz, C. C. Koch, On the formation and evolution of Cu–Ni-Rich bridges of AlNiCo alloys with thermomagnetic, Treatment. IEEE Trans. Magn. 52 (2016) 1-10.

DOI: 10.1109/tmag.2016.2555956

Google Scholar

[5] Z. Ahmada, Z.W. Liu, A. Hap, Synthesis, magnetic and microstructural properties of AlNiCo magnets with additives, J. Magn. Mang. Mater. 428 (2017) 125-131.

Google Scholar

[6] L. Zhou, M.K. Miller, H. Dillon, A. Palasyuk, S. Constantinides, R. W. Mccallum, I. E. Anderson, M.J. Kramer, Role of the applied magnetic field on the microstructural evolution in AlNiCo 8 alloys. Metall. Mater. Trans. E. 1E (2014) 27-34.

DOI: 10.1007/s40553-013-0004-3

Google Scholar

[7] L. Zhou, M.K. Miller, P. Lu , L. Ke, R. Skomski, H. Dillon, Q. Xing, A. Palasyuk, M.R. McCartney, D.J. Smith, S. Constantinides, R.W. McCallum, I.E. Anderson, V. Antropov, M.J. Kramer, architecture and magnetism of AlNiCo, Acta Mater. 74 (2014).

DOI: 10.1016/j.actamat.2014.04.044

Google Scholar

[8] Q. Xing, M.K. Miller, M.L. Zhou, H. M. Dillon, R. W. McCallum, I.E. Anderson, S. Constantinides, M.J. Kramer, Phase and elemental distributions in AlNiCo magnetic materials, IEEE Trans. Magn. 49 (2013) 3314-3317.

DOI: 10.1109/tmag.2013.2252155

Google Scholar

[9] A. Palasyuk, E. Blomberg, R. Prozorov, L. Yue, M. J. Kramer, R. W. Mccallum, I. E. Anderson, S. Constantinides, advances in Characterization of non-rare-rarth permanent magnets: exploring commercial AlNiCo grades 5–7 and 9, JOM. 65 (2013) 862–869.

DOI: 10.1007/s11837-013-0618-z

Google Scholar