[1]
C. Nan, Physics of inhomogeneous inorganic materials, Prog. Mater. Sci. 37(1993) 1-116.
Google Scholar
[2]
K. Sun, Z. D. Zhang, L. Qian, F. Dang, X. H. Zhang and R. H. Fan, Dual percolation behaviors of electrical and thermal conductivity in metal-ceramic composites, Appl. Phys. Lett. 108(2016) 061903.
DOI: 10.1063/1.4941758
Google Scholar
[3]
X. Zhang, X. Yan, Q. He, H. Wei, J. Long, J. Guo, H, Gu, J. Yu, J. Liu, D. Ding, L. Sun, S. Wei and Z. Guo, Electrically conductive polypropylene nanocomposites with negative permittivity at low carbon nanotube loading levels, ACS Appl. Mater. Inte. 7(2015).
DOI: 10.1021/am5082183
Google Scholar
[4]
R. Zheng, J. Gao, J. Wang, S. Feng, H. Ohtani, J. Wang and G. Chen, Thermal percolation in stable graphite suspensions, Nano Lett. 12(2011) 188-192.
DOI: 10.1021/nl203276y
Google Scholar
[5]
Z. Shi, S. Chen, R. Fan, X. Wang, X. Wang, Z. Zhang and K. Sun, Ultra low percolation threshold and significantly enhanced permittivity in porous metal–ceramic composites, J. Mater. Chem. C. 2(2014) 6752-6757.
DOI: 10.1039/c4tc01117a
Google Scholar
[6]
D. Kumar, J. Narayan, T. K. Nath, A. K. Sharma, A. Kvit and C. Jin, Tunable magnetic properties of metal ceramic composite thin films, Solid State Commun. 119(2001) 63-66.
DOI: 10.1016/s0038-1098(01)00213-7
Google Scholar
[7]
Z. C. Shi, R. H. Fan, Z. D. Zhang, H. Y. Gong, J. Ouyang, Y. J. Bai, X. H. Zhang and L. W. Yin.
Google Scholar
[8]
Experimental and theoretical investigation on the high frequency dielectric properties of Ag/Al2O3 composites, Appl. Phys. Lett. 99(2011) 032903.
Google Scholar
[9]
K. Sun, Z. Zhang, R. Fan, M. Chen, C. Cheng, Q. Hou, X. Zhang and Y. Liu, Random copper/yttrium iron garnet composites with tunable negative electromagnetic parameters prepared by in situ synthesis, RSC Adv. 5(2015) 61155-61160.
DOI: 10.1039/c5ra09882c
Google Scholar
[10]
M. Chen, X. Wang, Z. Zhang, K. Sun, C. Cheng and F. Dang, Negative permittivity behavior and magnetic properties of C/YIG composites at radio frequency, Mater. Design, 97(2016) 454-458.
DOI: 10.1016/j.matdes.2016.02.119
Google Scholar
[11]
C. Cheng, K. Yan, R. Fan, L. Qian, Z. Zhang, K. Sun and M. Chen, Negative permittivity behavior in the carbon/silicon nitride composites prepared by impregnation-carbonization approach, Carbon, 96(2016) 678-684.
DOI: 10.1016/j.carbon.2015.10.003
Google Scholar
[12]
K. Yan, R. Fan, M. Chen, K. Sun, L. Yin, H. Li, S. Pan and M. Yu, Perovskite (La, Sr) MnO3 with tunable electrical properties by the Sr-doping effect, J. Alloy. Compd. 628(2015) 429-432.
DOI: 10.1016/j.jallcom.2014.12.137
Google Scholar
[13]
Z. Shi, S. Chen, K. Sun, X. Wang, R. Fan and X. Wang, Tunable radio-frequency negative permittivity in nickel-alumina natural, meta-composites, Appl. Phys. Lett. 104(2014), 252908.
DOI: 10.1063/1.4885550
Google Scholar
[14]
S. J. Yan, C. Y., Xu, J. T. Jiang, D. B. Liu, Z. Y. Wang, J. Tang and L. Zhen, Strong dual-frequency electromagnetic absorption in Ku-band of C@ FeNi3 core/shell structured microchains with negative permeability, J. Magn. Magn, Mater. 349(2014).
DOI: 10.1016/j.jmmm.2013.08.027
Google Scholar
[15]
K. Sun, R. H. Fan, Z. D. Zhang, K. L. Yan, X. H. Zhang, P. T. Xie, M. X. Yu and S. B. Pan, The tunable negative permittivity and negative permeability of percolative Fe/Al2O3 composites in radio frequency range, Appl. Phys. Lett. 106(2015).
DOI: 10.1063/1.4918998
Google Scholar
[16]
Z. Shi, R. Fan, Z. Zhang, L. Qian, M. Gao, M. Zhang, L. Zheng, X. Zhang and L. Yin, Random composites of nickel networks supported by porous alumina toward double negative materials, Adv. Mater. 24(2012) 2349-2352.
DOI: 10.1002/adma.201200157
Google Scholar
[17]
Wang X, Shi Z, Chen M, et al. Tunable electromagnetic properties in Co/Al2O3 cermets prepared by wet chemical method[J]. Journal of the American Ceramic Society, 2014, 97(10): 3223-3229.
DOI: 10.1111/jace.13113
Google Scholar
[18]
X. F. Zhang, H. Huang and X. L. Dong. Core/shell metal/heterogeneous oxide nanocapsules: the empirical formation law and tunable electromagnetic losses, J. Phys. Chem. C, 117(2013) 8563-8569.
DOI: 10.1021/jp4015417
Google Scholar
[19]
A. K. Jonscher, Theuniversal'dielectric response, Nature, 267(1977) 673-679.
Google Scholar
[20]
G. C. Psarras, E. Manolakaki and G. M. Tsangaris, Dielectric dispersion and ac conductivity in—Iron particles loaded—polymer composites, Compos. Part A-Appl. 34(2003) 1187-1198.
DOI: 10.1016/j.compositesa.2003.08.002
Google Scholar
[21]
G. M. Tsangaris, N. Kouloumbi and S. Kyvelidis, Interfacial relaxation phenomena in particulate composites of epoxy resin with copper or iron particles, Mater. Chem. Phys., 44(1996) 245-250.
DOI: 10.1016/0254-0584(96)80063-0
Google Scholar
[22]
Q. Hou, K. Sun, P. Xie, K. Lan, R. Fan and Y. Liu, Ultrahigh dielectric loss of epsilon-negative copper granular composites, Mater. Lett. 169(2016) 86-89.
DOI: 10.1016/j.matlet.2016.01.092
Google Scholar