Dielectric and Magnetic Properties of Cermets with Iron-Aluminum Dual Metallic Particles

Article Preview

Abstract:

The dual metallic components, i.e., iron-aluminum particles were distributed in alumina matrix to fabricate lossy cermets. The electromagnetic parameters including ac conductivity, the complex permittivity and permeability were investigated. With the increase of filler fractions, the conductive carriers instead of the dipoles played a primary role in conductive and dielectric properties. Hopefully, the cermets composites could be promising candidates for electromagnetic wave attenuation and shielding.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1655-1660

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Nan, Physics of inhomogeneous inorganic materials, Prog. Mater. Sci. 37(1993) 1-116.

Google Scholar

[2] K. Sun, Z. D. Zhang, L. Qian, F. Dang, X. H. Zhang and R. H. Fan, Dual percolation behaviors of electrical and thermal conductivity in metal-ceramic composites, Appl. Phys. Lett. 108(2016) 061903.

DOI: 10.1063/1.4941758

Google Scholar

[3] X. Zhang, X. Yan, Q. He, H. Wei, J. Long, J. Guo, H, Gu, J. Yu, J. Liu, D. Ding, L. Sun, S. Wei and Z. Guo, Electrically conductive polypropylene nanocomposites with negative permittivity at low carbon nanotube loading levels, ACS Appl. Mater. Inte. 7(2015).

DOI: 10.1021/am5082183

Google Scholar

[4] R. Zheng, J. Gao, J. Wang, S. Feng, H. Ohtani, J. Wang and G. Chen, Thermal percolation in stable graphite suspensions, Nano Lett. 12(2011) 188-192.

DOI: 10.1021/nl203276y

Google Scholar

[5] Z. Shi, S. Chen, R. Fan, X. Wang, X. Wang, Z. Zhang and K. Sun, Ultra low percolation threshold and significantly enhanced permittivity in porous metal–ceramic composites, J. Mater. Chem. C. 2(2014) 6752-6757.

DOI: 10.1039/c4tc01117a

Google Scholar

[6] D. Kumar, J. Narayan, T. K. Nath, A. K. Sharma, A. Kvit and C. Jin, Tunable magnetic properties of metal ceramic composite thin films, Solid State Commun. 119(2001) 63-66.

DOI: 10.1016/s0038-1098(01)00213-7

Google Scholar

[7] Z. C. Shi, R. H. Fan, Z. D. Zhang, H. Y. Gong, J. Ouyang, Y. J. Bai, X. H. Zhang and L. W. Yin.

Google Scholar

[8] Experimental and theoretical investigation on the high frequency dielectric properties of Ag/Al2O3 composites, Appl. Phys. Lett. 99(2011) 032903.

Google Scholar

[9] K. Sun, Z. Zhang, R. Fan, M. Chen, C. Cheng, Q. Hou, X. Zhang and Y. Liu, Random copper/yttrium iron garnet composites with tunable negative electromagnetic parameters prepared by in situ synthesis, RSC Adv. 5(2015) 61155-61160.

DOI: 10.1039/c5ra09882c

Google Scholar

[10] M. Chen, X. Wang, Z. Zhang, K. Sun, C. Cheng and F. Dang, Negative permittivity behavior and magnetic properties of C/YIG composites at radio frequency, Mater. Design, 97(2016) 454-458.

DOI: 10.1016/j.matdes.2016.02.119

Google Scholar

[11] C. Cheng, K. Yan, R. Fan, L. Qian, Z. Zhang, K. Sun and M. Chen, Negative permittivity behavior in the carbon/silicon nitride composites prepared by impregnation-carbonization approach, Carbon, 96(2016) 678-684.

DOI: 10.1016/j.carbon.2015.10.003

Google Scholar

[12] K. Yan, R. Fan, M. Chen, K. Sun, L. Yin, H. Li, S. Pan and M. Yu, Perovskite (La, Sr) MnO3 with tunable electrical properties by the Sr-doping effect, J. Alloy. Compd. 628(2015) 429-432.

DOI: 10.1016/j.jallcom.2014.12.137

Google Scholar

[13] Z. Shi, S. Chen, K. Sun, X. Wang, R. Fan and X. Wang, Tunable radio-frequency negative permittivity in nickel-alumina natural, meta-composites, Appl. Phys. Lett. 104(2014), 252908.

DOI: 10.1063/1.4885550

Google Scholar

[14] S. J. Yan, C. Y., Xu, J. T. Jiang, D. B. Liu, Z. Y. Wang, J. Tang and L. Zhen, Strong dual-frequency electromagnetic absorption in Ku-band of C@ FeNi3 core/shell structured microchains with negative permeability, J. Magn. Magn, Mater. 349(2014).

DOI: 10.1016/j.jmmm.2013.08.027

Google Scholar

[15] K. Sun, R. H. Fan, Z. D. Zhang, K. L. Yan, X. H. Zhang, P. T. Xie, M. X. Yu and S. B. Pan, The tunable negative permittivity and negative permeability of percolative Fe/Al2O3 composites in radio frequency range, Appl. Phys. Lett. 106(2015).

DOI: 10.1063/1.4918998

Google Scholar

[16] Z. Shi, R. Fan, Z. Zhang, L. Qian, M. Gao, M. Zhang, L. Zheng, X. Zhang and L. Yin, Random composites of nickel networks supported by porous alumina toward double negative materials, Adv. Mater. 24(2012) 2349-2352.

DOI: 10.1002/adma.201200157

Google Scholar

[17] Wang X, Shi Z, Chen M, et al. Tunable electromagnetic properties in Co/Al2O3 cermets prepared by wet chemical method[J]. Journal of the American Ceramic Society, 2014, 97(10): 3223-3229.

DOI: 10.1111/jace.13113

Google Scholar

[18] X. F. Zhang, H. Huang and X. L. Dong. Core/shell metal/heterogeneous oxide nanocapsules: the empirical formation law and tunable electromagnetic losses, J. Phys. Chem. C, 117(2013) 8563-8569.

DOI: 10.1021/jp4015417

Google Scholar

[19] A. K. Jonscher, Theuniversal'dielectric response, Nature, 267(1977) 673-679.

Google Scholar

[20] G. C. Psarras, E. Manolakaki and G. M. Tsangaris, Dielectric dispersion and ac conductivity in—Iron particles loaded—polymer composites, Compos. Part A-Appl. 34(2003) 1187-1198.

DOI: 10.1016/j.compositesa.2003.08.002

Google Scholar

[21] G. M. Tsangaris, N. Kouloumbi and S. Kyvelidis, Interfacial relaxation phenomena in particulate composites of epoxy resin with copper or iron particles, Mater. Chem. Phys., 44(1996) 245-250.

DOI: 10.1016/0254-0584(96)80063-0

Google Scholar

[22] Q. Hou, K. Sun, P. Xie, K. Lan, R. Fan and Y. Liu, Ultrahigh dielectric loss of epsilon-negative copper granular composites, Mater. Lett. 169(2016) 86-89.

DOI: 10.1016/j.matlet.2016.01.092

Google Scholar