Dependence of Peak Frequency of Microwave Absorption for Co2Z Composite on the Thickness

Article Preview

Abstract:

A map displaying the reflection loss (RL) properties including the frequency and intensity for Co2Z barium ferrite composite was developed based on the matching model. In quarter-wavelength matching map, the number and the frequency positions of absorbing peaks presenting in RL curve for Co2Z barium ferrite composite with a certain thickness could be approximately predicted by quarter-wavelength matching model. From impedance map, the intensity of absorbing peaks in measured RL curves was analyzed. Moreover, the presence of absorbing peak in RL curve could be illustrated and understood physically and clearly using a picture of interference cancellation of two EM waves reflected by the absorber layer interface and a backed metal plate.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1631-1637

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z. W. Li, G. Q. Lin and L. B. Kong, IEEE Trans. Magn. 44, 2255 (2008).

Google Scholar

[2] G. Y. Chin and J. H. Wernick. Handbook of Magnetic Materials, Edited by Wohlfarth E P, 1980: Vol. 2.

Google Scholar

[3] K. S. Lee, Y. C. Yun, S. W. Kim and S. S. Kim, J. Appl. Phys. 103, 07E504 (2008).

Google Scholar

[4] G. H. Jonker, H. P. J. Wijn, P. B. Braun, Proceedings of the IEE - Part B: Radio and Electronic Engineering, 104, 249 (1957).

Google Scholar

[5] O. Acher, S. Dubourg, Physical Review B, 77 (2008).

Google Scholar

[6] X. De-Sheng, L. Fa-Shen, F. Xiao-Long, W. Fu-Sheng, Chinese Physics Letters, 25, 4120 (2008).

DOI: 10.1088/0256-307x/25/11/077

Google Scholar

[7] Y.B. Zhang, P. Wang, T.Y. Ma, Y. Wang, L. Qiao, T. Wang, Appl. Phys. Lett., 108, 4 (2016).

Google Scholar

[8] R.C. Pullar, I.K. Bdikin, A.K. Bhattacharya, J. Eur. Ceram. Soc., 32, 905 (2012).

Google Scholar

[9] R.C. Pullar, Prog. Mater Sci., 57, 1191 (2012).

Google Scholar

[10] A.P. Daigle, M. Geiler, A. Geiler, E. DuPré, J. Modest, Y. Chen, C. Vittoria, V.G. Harris, J. Magn. Magn. Mater., 324, 3719 (2012).

DOI: 10.1016/j.jmmm.2012.06.002

Google Scholar

[11] T. Wang, C. Pan, Y. Wang, G. Tan, H. Wang, R. Li, F. Li, J. Magn. Magn. Mater., 354, 12 (2014).

Google Scholar

[12] Y. Zhang, F. Xu, G. Tan, J. Zhang, T. Wang, F. Li, J. Alloys Compd., 615, 749 (2014).

Google Scholar

[13] A. M. Nicolsin and G. Ross, IEEE Trans. Instrum. Meas. 19, 377 (1970).

Google Scholar

[14] T. Wang, R. Han, G. G. Tan, J. Q. Wei, L. Qiao and F. S. Li, J. Appl. Phys., 112, 104903 (2012).

Google Scholar

[15] B. C. Wang , J. Q. Wei , L. Qiao, T. Wang and F. S. Li, J. Magn. Magn. Mater. 324, 761 (2011).

Google Scholar

[16] A. N. Yusoff, M. H. Abdullah, S. H. Ahmad, S. F. Jusoh, A. A. Mansor, S. A. A. Hamid, J. Appl. Phys., 92, 876 (2002).

Google Scholar

[17] S.M. Abbas, R. Chatterjee, A.K. Dixit, A.V.R. Kumar, T.C. Goel, J. Appl. Phys., 101, 074105 (2007).

Google Scholar

[18] S. M. Abbas, A. K. Dixit, R. Chatterjee, T. C. Goel, J. Magn. Magn. Mater., 309, 20 (2007).

Google Scholar

[19] J. R. Liu, M. Itoh, K. Machida, Appl. Phys. Lett. 83, 4017 (2003).

Google Scholar

[20] P. Singh, V. K. Babbar, A. Razdan, R. K. Puri, T. C. Goel, J. Appl. Phys. 87, 4362 (2000).

Google Scholar

[21] F. Qin, C. Brosseau, J. Appl. Phys. 111, 061301 (2012).

Google Scholar