[1]
Li X, Feng J, Zhu H, et al., Sandwich-like graphenenanosheets decorated with superparamagnetic CoFe2O4 nanocrystals and their application as an enhanced electromagnetic wave absorber[J], RSC Advances, 2014, 4, 33619-33625.
DOI: 10.1039/c4ra06732k
Google Scholar
[2]
Zhu W, Wang L, Zhao R, et al., Electromagnetic and microwave-absorbing properties of magnetic nickel ferrite nanocrystals[J], Nanoscale, 2011, 3, 2862-2864.
DOI: 10.1039/c1nr10274e
Google Scholar
[3]
Wang Y, Chen D, Yin X, et al., Hybrid of MoS2 and reduced graphene oxide: A lightweight and broadband electromagnetic wave absorber[J], ACS applied materials & interfaces, 2015, 7, 26226-26234.
DOI: 10.1021/acsami.5b08410
Google Scholar
[4]
Zeng M, Liu J, Yue M, et al. High-frequency electromagnetic properties of the manganese ferrite nanoparticles[J]. Journal of Applied Physics, 2015, 117, 17B527.
Google Scholar
[5]
Yin YC, Zeng M, Liu J, et al. Enhanced high-frequencyabsorption of anisotropic Fe3O4/graphene nanocomposites[J], Scientific Reports, 2016, 6, 25075.
Google Scholar
[6]
Zeng M, Zhang XX, Yu RH, et al. Improving microwave absorption via selectable diameter of amorphous-ferroalloy particle[J], Materials Science & Engineering B, 2014, 185, 21–25.
DOI: 10.1016/j.mseb.2014.02.002
Google Scholar
[7]
Zeng M, Liu J, Yu RH, et al. Electromagnetic properties of Co/Co3O4/reduced graphene oxide nanocomposite[J], IEEE Transactions on Magnetics, 2014, 50, 2801204.
Google Scholar
[8]
Wang C, Han X, Xu P, et al. The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material[J], Applied Physics Letters, 2011, 98, 975-980.
DOI: 10.1063/1.3555436
Google Scholar
[9]
Che RC, Zhi CY, Liang CY, et al. Fabrication and microwave absorption of carbon nanotubes/CoFe2O4 spinel nanocomposite[J]. Applied Physics Letters, 2006, 88, 33105-33105.
DOI: 10.1063/1.2165276
Google Scholar
[10]
Zhang X, Ji G, Liu W, et al. Thermal conversion of an Fe3O4@metal–organic framework: a new method for an efficient Fe–Co/nanoporous carbon microwave absorbing material[J], Nanoscale, 2015, 7, 12932-12942.
DOI: 10.1039/c5nr03176a
Google Scholar
[11]
Zhang X, Lv G, Wang G, et al. High-performance microwave absorption of flexible nanocomposites based on flower-like Co superstructures and polyvinylidene fluoride[J], RSC Advances, 2015, 5, 55468-55473.
DOI: 10.1039/c5ra06597f
Google Scholar
[12]
Guo H, Zhan Y, Chen Z, et al. Decoration of basalt fibers with hybrid Fe3O4 microspheres and their microwave absorption application in bisphthalonitrile composites[J], Journal of Materials Chemistry A, 2013, 1, 2286-2296.
DOI: 10.1039/c2ta00562j
Google Scholar
[13]
Liu J, Che R, Chen H, et al. Microwave absorption enhancement of multifunctional composite microspheres with spinel Fe3O4 cores and anatase TiO2 shells[J], Small, 2012, 8, 1214-1221.
DOI: 10.1002/smll.201102245
Google Scholar
[14]
Wang C, Han X, Xu P, et al. The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material[J], Applied Physics Letters, 2011, 98, 072906.
DOI: 10.1063/1.3555436
Google Scholar
[15]
Liu J, Zeng M, Yu RH, et al. Size influence to the high-frequency properties of granular magnetite nanoparticles[J], IEEE Transactions on Magnetics, 2014, 50, 2801304.
DOI: 10.1109/tmag.2014.2331061
Google Scholar
[16]
Giannakopoulou T, Kompotiatis L, Kontogeorgakos A, et al. Microwave behavior of ferrites prepared via sol-gel method[J]. Journal of magnetism and magnetic materials, 2002, 246, 360-365.
DOI: 10.1016/s0304-8853(02)00106-3
Google Scholar
[17]
Wu MZ, Zhang YD, Hui S, et al. Microwave magnetic properties of Co50/(SiO2)50 nanoparticles[J], Applied Physics Letters, 2002, 80, 4404.
DOI: 10.1063/1.1484248
Google Scholar
[18]
Gangopadhyay S, Hadjipanayis GC, Dale B, et al. Magnetic properties of ultrafine iron particles[J], Physical Review B, 1992, 45, 9778.
DOI: 10.1103/physrevb.45.9778
Google Scholar
[19]
Wallace JL, Broadband magnetic microwave absorbers: Fundamental limitations[J]. IEEE Transactions on Magnetics 1993, 29, 4209.
DOI: 10.1109/20.280862
Google Scholar