Preparation of (K,Na)NbO3 Powders with Wide Grain Size Distribution

Article Preview

Abstract:

This study is aimed at obtaining (K,Na)NbO3 powders with wide grain size distribution methods. (K,Na)NbO3 powders were successfully synthesized by different ways, including hydrothermal method, sol-gel method, and molten-salt method. The experiment results showed that the hydrothermal and sol-gel methods could not control the grain size of the (K,Na)NbO3 powders effectively . The grain size of (K,Na)NbO3 powders can be only tailored by the molten-salt method through controlling the starting oxide powder morphology, as well as crystallization temperature. The grain size was not affected by the experimental parameters whether or not the initial powders were milled. Furthermore, it has been found that the crystallization temperature could change the grain size of the powders monotonously. The (K,Na)NbO3 powders synthesized by molten salt method distributed from nanoscale to micron level, which can lay the foundation for further research on the grain size effect of (K,Na)NbO3 lead free piezoelectric ceramics.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1603-1610

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Hao et al., Materials & Design 31 (2010) 3146-3150.

Google Scholar

[2] J. J. Zhou et al., Journal of the European Ceramic Society 32 (2012) 3575-3582.

Google Scholar

[3] F. Bortolani, A. D. Campo, J. F. Fernandez, F. Clemens, F. Rubiomarcos, Chemistry of Materials 26 (2014) 3838-3848.

Google Scholar

[4] Y. Zhen, J. F. Li, K. Wang, Y. Yan, L. Yu, Materials Science & Engineering B 176 (2011) 1110-1114.

Google Scholar

[5] S. A. Zou, W. A. S., Journal of the American Ceramic Society 70 (1987) 18-21.

Google Scholar

[6] Y. Chang, Z. Yang, L. Wei, Journal of the American Ceramic Society 90 (2007) 1656-1658.

Google Scholar

[7] D. Q. Zhang, Z. C. Qin, X. Y. Yang, H. B. Zhu, M. S. Cao, Journal of Sol-Gel Science and Technology 39 (2013) 5931-5935.

Google Scholar

[8] Y. Shiratori, A. Magrez, C. Pithan, Journal of the European Ceramic Society 25 (2005) 2075-(2079).

Google Scholar

[9] K. Tamura, T. K. , Journal of the American Ceramic Society 95 (2012) 3421–3427.

Google Scholar

[10] T. M. Kamel, G. D. With, Journal of the European Ceramic Society 28 (2008) 851-861.

Google Scholar

[11] L. Q. Cheng, Journal of Materials Chemistry 2 (2014) 1519.

Google Scholar

[12] E. Buixaderas et al., Journal of Applied Physics 107 (2010) 014111 - 014111-10.

Google Scholar

[13] I. Fujii, S. Trolier-Mckinstry, C. Nies, Journal of the American Ceramic Society 94 (2011) 1-9.

Google Scholar

[14] Y. Zhang, L. Wang, D. Xue, Powder Technology 217 (2012) 629-633.

Google Scholar

[15] Q. P. Ding et al., Journal of Physical Chemistry C 112 (2008) 18846.

Google Scholar

[16] A. Ahniyaz, T. Watanabe, M. Yoshimura, Journal of Physical Chemistry B 109 (2005) 18846-18848.

Google Scholar

[17] G. H. Khorrami, A. Kompany, A. K. Zak, Materials Letters 110 (2013) 172-175.

Google Scholar

[18] H. Ge et al., Powder Technology 246 (2013) 144–147.

Google Scholar

[19] H. Ge et al., Journal of the American Ceramic Society 94 (2011) 4329–4334.

Google Scholar

[20] J. Y. Kim, H. P. Shang, T. Jeong, C. K. Yong, IEEE Transactions on Dielectrics & Electrical Insulation 19 (2012) 1819-1824.

Google Scholar

[21] W. Chen, S. Kume, K. Watari, Metal Powder Report 59 (2005) 3238-3240.

Google Scholar

[22] T. Lusiola, F. Bortolani, Q. Zhang, R. A. Dorey, Journal of Materials Science 47 (2012) 1938-(1942).

Google Scholar

[23] F. Bortolani, R. A. Dorey, Journal of the European Ceramic Society 30 (2010) 2073-(2079).

Google Scholar

[24] Z. Y. , L. Y., J. K., S. F., Z. M., Journal of the Chinese Ceramic Society 42 (2014) 432-436.

Google Scholar

[25] Z. Li, Y. Li, J. Zhai, Current Applied Physics 11 (2011) 2-13.

Google Scholar

[26] L. Q. Cheng, K. Wang, F. Z. Yao, F. Zhu, J. F. L., Journal of the American Ceramic Society 96 (2013) 2693-2698.

Google Scholar