Microstructure of Silicon Nitride Fibers at Elevated Temperatures

Article Preview

Abstract:

The composition and microstructure of silicon nitride fibers after heat-treatment at elevated temperatures were investigated by XRD, NMR, XPS, SEM and TEM analyses. The results show that as-received fibers consisted of amorphous silicon nitride, and a little Si-C-O structure. During heat-treatment process, α-Si3N4 and β-Si3N4 formed resulting from the crystallization of amorphous silicon nitride, and the formation of β-SiC derived from the decomposition of Si-C-O structure. As heat-treated temperature increased from 1400oC to 1600oC, the above phenomenon become obvious, indicating that the fiber would possess high serving life with serving temperature lower than 1400oC. The tensile strength of fibers stays stable when heat-treated temperature was below 1200oC, while the strength retention of fibers sharply decreased to 50% after heat-treatment at 1400°C.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1705-1711

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V. Pavarajarn, R. Precharyutasin, Synthesis of silicon nitride fibers by the carbothermal reduction and nitridation of rice husk ash, J. Am. Ceram. Soc., 93 (2010) 973-979.

DOI: 10.1111/j.1551-2916.2009.03530.x

Google Scholar

[2] F. Riley, Silicon nitride and related materials, J. Am. Ceram. Soc. 83 (2000) 245-265.

Google Scholar

[3] Y. J. Zhang, N. L. Wang, R. R. He, Reversible bending of Si3N4 nanowire, J. Mater. Res., 15 (2000) 1048-1051.

Google Scholar

[4] Y. J. Xu, C. B. Cao, Z. Chen, Preparation of novel saw-toothed and rib-like alpha-Si3N4 whiskers, J. Phys. Chem. B., 110 (2006) 3088-3092.

Google Scholar

[5] T. E. Warner, D. J. Fray, Synthesis of silicon nitride fibers from ferrosilicon, J. Mater. Sci. Lett., 19 (2000) 733-734.

Google Scholar

[6] P. Gao, J. Xu, Y. Piao, W. Y. Ding, Deposition of silicon carbon nitride thin films by microwave ECR plasma enhanced unbalance magnetron sputtering, Surf. Coat. Technol., 201 (2007) 5298-5301.

DOI: 10.1016/j.surfcoat.2006.07.197

Google Scholar

[7] F. Lencart-Silva, J. M. Vieira, Carbothermal reduction and nitridation of silica: Nuclei planar growth controlled by silicon monoxide diffusion on the reducer surface, J. Mater. Process. Technol., 93 (1999) 112-117.

DOI: 10.1016/s0924-0136(99)00184-3

Google Scholar

[8] J. M. Qian, Z. H. Jin, Preparation and characterization of porous, biomorphic SiC ceramic with hybrid pore structure, J. Eur. Ceram. Soc., 26 (2006) 1311-1316.

DOI: 10.1016/j.jeurceramsoc.2005.03.229

Google Scholar

[9] A. Ortega, M. D. Alcala, C. Real, Carbothermal synthesis of silicon nitride (Si3N4): Kinetics and diffusion mechanism, J. Mater. Process. Technol., 195 (2008) 224-231.

DOI: 10.1016/j.jmatprotec.2007.05.004

Google Scholar

[10] A. W. Weimer, G. A. Eisman, D. W. Susnitzky, Mechanism and kinetics of the carbothermal nitridation synthesis of alpha-silicon nitride, J. Am. Ceram. Soc., 80 (1997) 2853-2863.

DOI: 10.1111/j.1151-2916.1997.tb03203.x

Google Scholar

[11] Y Wang, H. F. Cheng, H. T. Liu, Microstructure and room temperature mechanical properties of mullite fibers after heat-treatment at elevated temperatures, Mater. Sci. Eng. A, 578 (2013) 287-293.

DOI: 10.1016/j.msea.2013.04.089

Google Scholar

[12] C. R. Zou, C. R. Zhang, B. Li, Fabrication and properties of borazine derived boron nitride matrix wave-transparent composites reinforced by 2. 5 dimensional fabric of Si-N-O fibers, Mater. Sci. Eng. A, 620 (2015) 420-427.

DOI: 10.1016/j.msea.2014.10.046

Google Scholar

[13] C. R. Zou, C. R. Zhang, B. Li, Ablation behavior of boron nitride based ceramic composites reinforced by continuous silicon oxynitride fiber, Ceram. Int., 41 (2015) 4768-4774.

DOI: 10.1016/j.ceramint.2014.12.027

Google Scholar

[14] A. See, J. Hassan, M. Hashim, Dielectric behavior of b-SiC nanopowders in air between 30ºC and 400ºC, J. Mater. Sci: Mater. Electron., 27 (2016) 6623-6629.

DOI: 10.1007/s10854-016-4608-0

Google Scholar

[15] H. Z. Yue, X. Wang, J. T. Tian, Fabrication of Si3N4 reticulated porous ceramics reinforced by needle-like β-Si3N4, Ceram. Int., 40 (2014) 8525-8532.

DOI: 10.1016/j.ceramint.2014.01.065

Google Scholar

[16] M Bechelany, A Brioude, S Bernard, Large-scale preparation of faceted Si3N4 nanorods from β-SiC nanowires, Nanotechnology, 18 (2007) 3353-3358.

DOI: 10.1088/0957-4484/18/33/335305

Google Scholar

[17] Y. J. Bai, C. G. Wang, Y. X Qi, Rapid synthesis of Si3N4 dendritic crystals, Scripta. Mater., 54 (2006) 447-451.

DOI: 10.1016/j.scriptamat.2005.10.013

Google Scholar