[1]
V. Pavarajarn, R. Precharyutasin, Synthesis of silicon nitride fibers by the carbothermal reduction and nitridation of rice husk ash, J. Am. Ceram. Soc., 93 (2010) 973-979.
DOI: 10.1111/j.1551-2916.2009.03530.x
Google Scholar
[2]
F. Riley, Silicon nitride and related materials, J. Am. Ceram. Soc. 83 (2000) 245-265.
Google Scholar
[3]
Y. J. Zhang, N. L. Wang, R. R. He, Reversible bending of Si3N4 nanowire, J. Mater. Res., 15 (2000) 1048-1051.
Google Scholar
[4]
Y. J. Xu, C. B. Cao, Z. Chen, Preparation of novel saw-toothed and rib-like alpha-Si3N4 whiskers, J. Phys. Chem. B., 110 (2006) 3088-3092.
Google Scholar
[5]
T. E. Warner, D. J. Fray, Synthesis of silicon nitride fibers from ferrosilicon, J. Mater. Sci. Lett., 19 (2000) 733-734.
Google Scholar
[6]
P. Gao, J. Xu, Y. Piao, W. Y. Ding, Deposition of silicon carbon nitride thin films by microwave ECR plasma enhanced unbalance magnetron sputtering, Surf. Coat. Technol., 201 (2007) 5298-5301.
DOI: 10.1016/j.surfcoat.2006.07.197
Google Scholar
[7]
F. Lencart-Silva, J. M. Vieira, Carbothermal reduction and nitridation of silica: Nuclei planar growth controlled by silicon monoxide diffusion on the reducer surface, J. Mater. Process. Technol., 93 (1999) 112-117.
DOI: 10.1016/s0924-0136(99)00184-3
Google Scholar
[8]
J. M. Qian, Z. H. Jin, Preparation and characterization of porous, biomorphic SiC ceramic with hybrid pore structure, J. Eur. Ceram. Soc., 26 (2006) 1311-1316.
DOI: 10.1016/j.jeurceramsoc.2005.03.229
Google Scholar
[9]
A. Ortega, M. D. Alcala, C. Real, Carbothermal synthesis of silicon nitride (Si3N4): Kinetics and diffusion mechanism, J. Mater. Process. Technol., 195 (2008) 224-231.
DOI: 10.1016/j.jmatprotec.2007.05.004
Google Scholar
[10]
A. W. Weimer, G. A. Eisman, D. W. Susnitzky, Mechanism and kinetics of the carbothermal nitridation synthesis of alpha-silicon nitride, J. Am. Ceram. Soc., 80 (1997) 2853-2863.
DOI: 10.1111/j.1151-2916.1997.tb03203.x
Google Scholar
[11]
Y Wang, H. F. Cheng, H. T. Liu, Microstructure and room temperature mechanical properties of mullite fibers after heat-treatment at elevated temperatures, Mater. Sci. Eng. A, 578 (2013) 287-293.
DOI: 10.1016/j.msea.2013.04.089
Google Scholar
[12]
C. R. Zou, C. R. Zhang, B. Li, Fabrication and properties of borazine derived boron nitride matrix wave-transparent composites reinforced by 2. 5 dimensional fabric of Si-N-O fibers, Mater. Sci. Eng. A, 620 (2015) 420-427.
DOI: 10.1016/j.msea.2014.10.046
Google Scholar
[13]
C. R. Zou, C. R. Zhang, B. Li, Ablation behavior of boron nitride based ceramic composites reinforced by continuous silicon oxynitride fiber, Ceram. Int., 41 (2015) 4768-4774.
DOI: 10.1016/j.ceramint.2014.12.027
Google Scholar
[14]
A. See, J. Hassan, M. Hashim, Dielectric behavior of b-SiC nanopowders in air between 30ºC and 400ºC, J. Mater. Sci: Mater. Electron., 27 (2016) 6623-6629.
DOI: 10.1007/s10854-016-4608-0
Google Scholar
[15]
H. Z. Yue, X. Wang, J. T. Tian, Fabrication of Si3N4 reticulated porous ceramics reinforced by needle-like β-Si3N4, Ceram. Int., 40 (2014) 8525-8532.
DOI: 10.1016/j.ceramint.2014.01.065
Google Scholar
[16]
M Bechelany, A Brioude, S Bernard, Large-scale preparation of faceted Si3N4 nanorods from β-SiC nanowires, Nanotechnology, 18 (2007) 3353-3358.
DOI: 10.1088/0957-4484/18/33/335305
Google Scholar
[17]
Y. J. Bai, C. G. Wang, Y. X Qi, Rapid synthesis of Si3N4 dendritic crystals, Scripta. Mater., 54 (2006) 447-451.
DOI: 10.1016/j.scriptamat.2005.10.013
Google Scholar