[1]
M. Cyr, A. Carles-Gibergues, A. Tagnit-Hamou, Titanium fume and ilmenite fines characterization for their use in cement-based materials, Cem. Concr. Res. 30 (2000) 1097-1104.
DOI: 10.1016/s0008-8846(00)00290-8
Google Scholar
[2]
R.D.T. Filho, K. Scrivener, G.L. England, et al, Durability of alkali-sensitive sisal and coconut fibres in cement mortar composites, Cem. Concr. Compos. 22 (2000) 127-143.
DOI: 10.1016/s0958-9465(99)00039-6
Google Scholar
[3]
B. Han, P. Wang, C. Ke, et al, Hydration behavior of spinel containing high alumina cement from high titania blast furnace slag, Cem. Concr. Res. 79 (2016) 257-264.
DOI: 10.1016/j.cemconres.2015.09.019
Google Scholar
[4]
J. Cheung, A. Jeknavorian, L. Roberts, et al, Impact of admixtures on the hydration kinetics of Portland cement, Cem. Concr. Res. 41 (2011) 1289-1309.
DOI: 10.1016/j.cemconres.2011.03.005
Google Scholar
[5]
X.M. Kong, Z.B. Lu, H. Liu, D.M. Wang, Influence of triethanolamine on the hydration and the strength development of cementitious systems, Mag. Concr. Res. 65 (2013) 1101-1109.
DOI: 10.1680/macr.13.00015
Google Scholar
[6]
V.S. Ramachandran, Influence of triethanolamine on the hydration characteristics of tricalcium silicate, J. Appl. Chem. Biotechnol. 22 (1972) 1125-1138.
DOI: 10.1002/jctb.5020221102
Google Scholar
[7]
V. S Ramachandran, Action of triethanolamine on the hydration of tricalcium aluminate, Cem. Concr. Res. 3 (1973) 41-54.
Google Scholar
[8]
V. S Ramachandran, Hydration of cement-role of triethanolamine, Cem. Concr. Res. 6 (1973) 623-632.
Google Scholar
[9]
E. Gartner and D. Myers, Influence of tertiary alkanolamines on Portland cement hydration, J. Amer. Ceram. Soc. 76 (1993) 1521-1530.
DOI: 10.1111/j.1151-2916.1993.tb03934.x
Google Scholar
[10]
J.P. Perez, A. Nonat, S. Pourchet, Why TIPA leads to an increase in the mechanical properties of mortars whereas TEA does not, ACI Materials Journal 217 (2003) 583-594.
DOI: 10.14359/12939
Google Scholar
[11]
J.P. Perez, A. Nonat, S. Garrault-Gauffinet, et al, Proceedings of the 11th International Congress on the Chemistry of Cement, Durban, South Africa (2013).
Google Scholar
[12]
K. Riding, D.A. Silva, K. Scrivener, Early age strength enhancement of blended cement systems by CaCl2, and diethanol-isopropanolamine, Cem. Concr. Res. 40 (2010) 935-946.
DOI: 10.1016/j.cemconres.2010.01.008
Google Scholar
[13]
C.Y. Lee, H.K. Lee, K.M. Lee, Strength and microstructural characteristics of chemically activated fly ash–cement systems, Cem. Concr. Res. 33(2003) 425-431.
DOI: 10.1016/s0008-8846(02)00973-0
Google Scholar
[14]
Q. Zeng, K. Li, T. Fen-Chong, et al, Pore structure characterization of cement pastes blended with high-volume fly-ash, Cem. Concr. Res. 42 (2012) 194-204.
DOI: 10.1016/j.cemconres.2011.09.012
Google Scholar
[15]
X.M. Kong, Z.B. Lu, H. Liu, D.M. Wang, Influence of triethanolamine on the hydration and the strength development of cementitious systems, Mag. Concr. Res. 65 (2013) 1101-1109.
DOI: 10.1680/macr.13.00015
Google Scholar
[16]
A. Guerrero, S. Goñi, A. Macı́As, et al, Mechanical properties, pore size distribution, and pore solution of fly ash-belite cement mortars, Cem. Concr. Res. 29(1999) 1753-1758.
DOI: 10.1016/s0008-8846(99)00161-1
Google Scholar
[17]
Radim Vočka, Christophe Gallé, Marc Dubois, et al, Mercury intrusion porosimetry and hierarchical structure of cement pastes: Theory and experiment, Cem. Concr. Res. 30 (2000) 521-527.
DOI: 10.1016/s0008-8846(99)00252-5
Google Scholar