Sensing Mechanism of SnO2 (110) Surface to NO2: Density Functional Theory Calculations

Article Preview

Abstract:

It is necessary to develop NO2 gas sensors as NO2 is a pollutant. While, different from the reducing gases, oxidizing gas NO2 will put up a complicated sensing process. Density functional theory (DFT) calculations are necessary to be performed to understand NO2-sensing mechanisms at the atomic level. In this study we introduce NO2 to SnO2 (110) surface with oxygen species pre-adsorbed. The results show that NO2 sensing mechanism of SnO2 surface strongly depends on the concentration of oxygen in the ambient atmosphere (usually, no effects of temperature and pressure are considered). The direct interactions between NO2 molecule and SnO2 sub-reduced surface (with two rows of fold-coordinated bridging oxygens removed) for very low oxygen concentrations show that, NO2 gas molecules interact directly with Sn instead of reacting with oxygen species, resulting in an increase in resistance of SnO2. We investigate gas-sensing processes of interaction between NO2 molecule and SnO2 surface with pre-adsorbed oxygen species for the case of considerable high oxygen concentrations. Adsorbed molecular oxygen ions compete with adsorbing NO2 molecules for available surface sites and electrons from the SnO2. As the availability of oxygen ions on the SnO2 surface increasing, the interaction between NO2 and adsorbed oxygen species give rise to a reducing interaction, which brings a decrease in resistance of SnO2.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1947-1959

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B.T. Marquis, J.F. Vetelino, A Semiconducting Metal Oxide Sensor Array for The Detection of NOx and NH3, Sens. Actuators, B. 77 (2001) 100–110.

DOI: 10.1016/s0925-4005(01)00680-3

Google Scholar

[2] J. Brunet, V.P. Gracia, A. Pauly, C. Varenne, B. Lauron, An Optimised Gas Sensor Microsystem for Accurate and Real-time Measurement of Nitrogen Dioxide at ppb Level, Sens. Actuators, B. 134 (2008) 632–639.

DOI: 10.1016/j.snb.2008.06.010

Google Scholar

[3] S.G. Ansari, P. Boroojerdian, S.R. Sainkar, R.N. Karekar, R.C. Aiyer, S.K. Kulkarni, Grain Size Effects on H2 Gas Sensitivity of Thick Film Resistor Using SnO2 Nanoparticles, Thin Solid Films. 295 (1997) 271-276.

DOI: 10.1016/s0040-6090(96)09152-3

Google Scholar

[4] N.S. Baik, G. Sakai, N. Miura, N. Yamazoe, Hydrothermally Treated Sol Solution of Tin Oxide for Thin-film Gas Sensor, Sens. Actuators, B. 63(2000) 74-79.

DOI: 10.1016/s0925-4005(99)00513-4

Google Scholar

[5] M.S. Kwak, J.H. Lee, J.S. Hwang, C.O. Park, NOx Sensing Characteristics of Ba2WO5 at An Elevated Temperatures, Metals and Materials. 5 (1999) 351-355.

DOI: 10.1007/bf03187757

Google Scholar

[6] V. Lantto, T.T. Rantala, T.S. Rantala, Atomistic Understanding of Semiconductor Gas Sensors, J. Eur. Ceram. Soc. 21 (1999) 1961−(1965).

DOI: 10.1016/s0955-2219(01)00151-0

Google Scholar

[7] T.S. Rantala, T.T. Rantala, V. Lantto, Computational Studies for the Interpretation of Gas Response of SnO2 (110) Surface, Sens. Actuators, B. 65 (2000) 375−378.

DOI: 10.1016/s0925-4005(99)00292-0

Google Scholar

[8] T.S. Rantala, T.T. Rantala, V. Lantto, Surface Relaxation of the (110) Face of Rutile SnO2, Surf. Sci. 420 (19990 103−109.

DOI: 10.1016/s0039-6028(98)00833-4

Google Scholar

[9] J. Oviedo, M.J. Gillan, Reconstructions of Strongly Reduced SnO2 (110) Studied by First-principles Methods, Surf. Sci. 513 (2002) 26−36.

DOI: 10.1016/s0039-6028(02)01725-9

Google Scholar

[10] J. Oviedo, M.J. Gillan, Energetics and Structure of Stoichiometric SnO2 Surfaces Studied by First -principles Calculations, Surf. Sci. 463 (2000) 93−101.

DOI: 10.1016/s0039-6028(00)00612-9

Google Scholar

[11] I. Manassidis, J. Goniakowski, L.N. Kantorovich, M.J. Gillan, The Structure of the Stoichiometric and Reduced SnO2 (110) Surface, Surf. Sci. 339 (1995) 258−271.

DOI: 10.1016/0039-6028(95)00677-x

Google Scholar

[12] M.A. Maki-Jaskari, T.T. Rantala, Band Structure and Optical Parameters of the SnO2 (110) Surface, Phys. Rev. B. 64 (2001) 075407.

Google Scholar

[13] T.T. Rantala, T.S. Rantala, V. Lantto, Electronic Structure of SnO2 (110) Surface, Mater. Sci. Semicond. Process. 3 (2000) 103−107.

DOI: 10.1016/s1369-8001(00)00021-4

Google Scholar

[14] M.A. Maki-Jaskari, T.T. Rantala, Theoretical Study of Oxygen-Deficient SnO2 (110) Surface, Phys. Rev. B. 65 (2002) 245428.

Google Scholar

[15] M.A. Maki-Jaskari, T.T. Rantala, V.V. Golovanov, Computational Study of Charge Accumulation at SnO2 (110) Surface, Surf. Sci. 577 (2005) 127−138.

DOI: 10.1016/j.susc.2005.01.004

Google Scholar

[16] J. Oviedo, M.J. Gillan, First-principles Study of the Interaction of Oxygen with the SnO2 (110) Surface, Surf. Sci. 490 (2001) 221−236.

DOI: 10.1016/s0039-6028(01)01372-3

Google Scholar

[17] F.R. Sensato, Periodic Study on the Structural and Electronic Properties of Bulk, Oxidized and Reduced SnO2 (110) Surfaces and the Interaction with O2. Surf. Sci. 511 (2002) 408−420.

Google Scholar

[18] Y.B. Xue, Z.A. Tang, Density Functional Study of the Structure of SnO2 (110) Surface and the Property of Oxygen Adsorption, Chin. J. Sens. Actuators. 20 (2007) 2364−2368.

Google Scholar

[19] J.B.L. Martins, E. Longo, J. Andres, C.A. Taff, Theoretical Study of Cluster Models and Molecular Hydrogen Interaction with SnO2 (110) Surfaces, J. Mol. Struct. 335 (1995) 167−174.

DOI: 10.1016/0166-1280(94)03997-y

Google Scholar

[20] M. Calatayud, J. Andres, A. Beltran, A Theoretical Analysis of Adsorption and Dissociation of CH3OH on the Stoichiometric SnO2(110) Surface, Surf. Sci. 430 (1999) 213−222.

DOI: 10.1016/s0039-6028(99)00507-5

Google Scholar

[21] J.D. Prades, A. Cirera, J.R. Morante, J.M. Pruneda, P. Ordejon, Ab Initio Study of NOx Compounds Adsorption on SnO2 Surface, Sens. Actuators, B. 126 (2007) 62−67.

DOI: 10.1016/j.snb.2006.10.040

Google Scholar

[22] M. Melle-Franco, G. Pacchioni, CO Adsorption on SnO2 (110): Cluster and Periodic Ab Initio Calculations, Surf. Sci. 461 (2000) 54−66.

DOI: 10.1016/s0039-6028(00)00528-8

Google Scholar

[23] F. Ciriaco, L. Cassidei, M. Cacciatore, G. Petrella, First Principle Study of Processes Modifying the Conductivity of Substoichiometric SnO2 Materials upon Adsorption of CO from Atmosphere, Chem. Phys. 303 (2004) 55−61.

DOI: 10.1016/j.chemphys.2004.05.005

Google Scholar

[24] Y.B. Xue, Z.A. Tanga, Density Functional Study of the Interaction of CO with Undoped and Pd Uoped SnO2 (110) Surface, Sens. Actuators, B. 138 (2009) 108−112.

DOI: 10.1016/j.snb.2009.02.030

Google Scholar

[25] N. Bârsan, M. Schweizer-Berberich, W. Göpel, Fundamentals and Practical Applications to Design Nanoscaled SnO2 Gas Sensors: A Status Report, Fresenius J. Anal. Chem. 365 (1999) 287−304.

DOI: 10.1007/s002160051490

Google Scholar

[26] K. Ihokura, J. Watson, The Stannic Oxide Gas Sensor Principles and Applications, Chemical Rubber Company Press: Florida, (1994).

Google Scholar

[27] W. Göpel, K.D. Schierbaum, SnO2 Sensors: Current Status and Future Prospects, Sens. Actuators, B. 26 (1995) 1−12.

DOI: 10.1016/0925-4005(94)01546-t

Google Scholar

[28] D. Williams, Semiconducting Oxides as Gas-sensitive Resistors, Sens. Actuators, B. 57 (1999) 1−16.

Google Scholar

[29] M. Che, A.J. Tench, Characterization and Reactivity of Mononuclear Oxygen Species on Oxide Surfaces, Adv. Catal. 31 (1982) 77−133.

DOI: 10.1016/s0360-0564(08)60453-8

Google Scholar

[30] J.P. Joly, L. Gonzalez-Cruz, Y. Arnaud, Désorption à Température Programmée de L'oxygène Labile de SnO2, Bull. Soc. Chim. Fr. 1 (1986) 11−17.

Google Scholar

[31] G.L. Shen, R. Casanova, G. Thornton, Interaction of O2 with SnO2 (110)1 × 1 and 4 × 1, Vacuum. 43 (1992)1129−1131.

DOI: 10.1016/0042-207x(92)90350-6

Google Scholar

[32] Y. Nagasawa, T. Choso, T. Karasuda, S. Shimomura, F. Ouyang, K. Tabata, Y. Yamaguchi, Photoemission Study of the Interaction of A Reduced Thin Film SnO2 with Oxygen, Surf. Sci. 433 (1999) 226−229.

DOI: 10.1016/s0039-6028(99)00044-8

Google Scholar

[33] S.C. Chang, Oxygen Chemisorption on Tin Oxide: Correlation between Electrical Conductivity and EPR Measurements, J. Vac. Sci. Technol. 17 (1980) 366−369.

DOI: 10.1116/1.570389

Google Scholar

[34] G. Heiland, D. Kohl, Chemical Sensor Technology, Kodansha, Tokyo, (1988).

Google Scholar

[35] N. Bârsan, U. Weimar, Understanding the Fundamental Principles of Metal Oxide Based Gas Sensors; the Example of CO Sensing with SnO2 Sensors in the Presence of Humidity, J. Phys.: Condens. Matter. 15 (2003) R813−R839.

DOI: 10.1088/0953-8984/15/20/201

Google Scholar

[36] J. Huang, N. Matsunaga, K. Shimanoe, N. Yamazoe, T. Kunitake, Nanotubular SnO2 Templated by Cellulose Fibers: Synthesis and Gas Sensing, Chem. Mater. 17 (2005) 3513−3518.

DOI: 10.1021/cm047819m

Google Scholar

[37] S.R. Morrison, Selectivity in Semiconductor Gas Sensors, Sens. Actuators, B. 12 (1987) 425−440.

DOI: 10.1016/0250-6874(87)80061-6

Google Scholar

[38] S.H. Hahn, N. Bârsan, U. Weimar, S.G. Ejakov, J.H. Visser, R.E. Soltis, CO Sensing with SnO2 Thick Film Sensors: Role of Oxygen and Water Vapour, Thin Solid Films. 436 (2003) 17−24.

DOI: 10.1016/s0040-6090(03)00520-0

Google Scholar

[39] N. Bârsan, M. Hübner, U. Weimar, Conduction Mechanisms in SnO2 Based Polycrystalline Thick Film Gas Sensors Exposed to CO and H2 in Different Oxygen Backgrounds, Sens. Actuators, B. 157 (2011) 510−517.

DOI: 10.1016/j.snb.2011.05.011

Google Scholar

[40] N. Bârsan, M. Hübner, U. Weimar, Conduction Model of Metal Oxide Gas Sensors, J. Electroceram. 7 (2001) 143−167.

Google Scholar

[41] Y.H. Duan, Electronic Properties and Stabilities of Bulk and Low-index Surfaces of SnO in Comparison with SnO2: A Firstprinciples Sensity Functional Approach with an Empirical Correction of Van Der Waals Interactions, Phys. Rev. B. 77 (2008).

DOI: 10.1103/physrevb.77.045332

Google Scholar

[42] J.C. Garcia, L.V.C. Assali, J.F. Justo, The Structural and Electronic Properties of Tin Oxide Nanowires: An Ab Initio Investigation, J. Phys. Chem. C. 116 (2012) 13382−13387.

DOI: 10.1021/jp300793e

Google Scholar

[43] M. Batzill, U. Diebold, The Surface and Materials Science of Tin Oxide, Prog. Surf. Sci. 79 (2005) 47−154.

Google Scholar

[44] M. Batzill, K. Katsiev, J.M. Burst, Y. Losovyj, W. Bergermayer, I. Tanaka, U. Diebold, Tuning Surface Properties of SnO2 (101) by Reduction, J. Phys. Chem. Solids. 67 (2006) 1923−(1929).

DOI: 10.1016/j.jpcs.2006.05.042

Google Scholar

[45] W. Bergermayer, I. Tanka, Reduced SnO2 Surfaces by First-Principles Calculations, Appl. Phys. Lett. 84 (2004) 909−911.

DOI: 10.1063/1.1646460

Google Scholar

[46] M. Batzill, K. Katsiev, J.M. Burst, U. Diebold, A.M. Chaka, B. Delley, Gas-phase-dependent Properties of SnO2 (110), (100), and (101) Single-crystal Surfaces: Structure, Composition, and Electronic Properties, Phys. Rev. B. 72 (2005) 165414.

DOI: 10.1103/physrevb.72.165414

Google Scholar

[47] A.V. Bandura, J.D. Kubicki, J.O. Sofo, Comparisons of Multilayer H2O Adsorption onto the (110) Surfaces of α-TiO2 and SnO2 as Calculated with Density Functional Theory, J. Phys. Chem. B. 112 (2008) 11616−11624.

DOI: 10.1021/jp711763y

Google Scholar

[48] J. Yue, X.C. Jiang, A.B. Yu, Adsorption of the OH Group on SnO2 (110) Oxygen Bridges: A Molecular Dynamics and Density Functional Theory Study, J. Phys. Chem. C. 117 (2013) 9962−9969.

DOI: 10.1021/jp4022294

Google Scholar

[49] X.F. Wang, H.W. Qin, Y.P. Chen, J.F. Hu, Sensing Mechanism of SnO2 (110) Surface to CO: Density Functional Theory Calculations, J. Phys. Chem. C. 118 (2014) 28548−28561.

DOI: 10.1021/jp501880r

Google Scholar

[50] Y.P. Chen, X.F. Wang, C.M. Shi, L. Li, H.W. Qin, J.F. Hu, Sensing Mechanism of SnO2(110) Surface to H2 Density Functionaltheory Calculations, Sens. Actuators, B. 22 (2015), 279–287.

DOI: 10.1016/j.snb.2015.05.061

Google Scholar

[51] B. Delley, An All-electron Numerical Method for Solving the Local Density Functional for Polyatomic Molecules, J. Chem. Phys. 92 (1990) 508−517.

DOI: 10.1063/1.458452

Google Scholar

[52] B. Delley, From Molecules to Solids with the DMol Approach, J. Chem. Phys. 113 (2000) 7756−7764.

Google Scholar

[53] R.S. Mulliken, Electronic Population Analysis on LCAO-MO Molecular Wave Functions, I. J. Chem. Phys. 23 (1995)1833−1840.

DOI: 10.1063/1.1740588

Google Scholar

[54] Y. Yamaguchi, Y. Nagasawa, S. Shimomura, K. Tabata, E. Suzuki, A Density Functional Theory Study of the Interaction of Oxygen with a Reduced SnO2 (110) Surface, Chem. Phys. Lett. 316 (2000) 477-482.

DOI: 10.1016/s0009-2614(99)01365-2

Google Scholar

[55] Y. Yamaguchi, K. Tabata, E. Suzuki, Density Functional Theory Calculations for the Interaction of Oxygen with Reduced M/SnO2 (110) (M=Pd, Pt) Surfaces, Surf. Sci. 526 (2003) 149-158.

DOI: 10.1016/s0039602802026006

Google Scholar

[56] J.P. Joly, L. Gonzalez-Cruz, Y. Arnaud, Désorption à Température Programmée de L'oxygène Labile de SnO2, Bull. Soc. Chim. Fr. 1 (1986) 11-17.

Google Scholar

[57] B. Ruhland, T. Becker, G. Müller, Gas-kinetic Interactions of Nitrous Oxides with SnO2 Surfaces, Sens. Actuators, B. 50 (1998) 85–94.

DOI: 10.1016/s0925-4005(98)00160-9

Google Scholar

[58] A. Sharma, M. Tomar, V. Gupta, SnO2 Thin Film Sensor with Enhanced Response for NO2 Gas at Lower Temperatures, Sens. Actuators, B. 156 (2011) 743– 752.

DOI: 10.1016/j.snb.2011.02.033

Google Scholar

[59] J. P. Perdew, K. Burke, M Ernzerhof, ERRATA: Generalized gradient approximation made simple, Phys. Rev. Lett., 77 (1996) 3865.

DOI: 10.1103/physrevlett.77.3865

Google Scholar