[1]
B.T. Marquis, J.F. Vetelino, A Semiconducting Metal Oxide Sensor Array for The Detection of NOx and NH3, Sens. Actuators, B. 77 (2001) 100–110.
DOI: 10.1016/s0925-4005(01)00680-3
Google Scholar
[2]
J. Brunet, V.P. Gracia, A. Pauly, C. Varenne, B. Lauron, An Optimised Gas Sensor Microsystem for Accurate and Real-time Measurement of Nitrogen Dioxide at ppb Level, Sens. Actuators, B. 134 (2008) 632–639.
DOI: 10.1016/j.snb.2008.06.010
Google Scholar
[3]
S.G. Ansari, P. Boroojerdian, S.R. Sainkar, R.N. Karekar, R.C. Aiyer, S.K. Kulkarni, Grain Size Effects on H2 Gas Sensitivity of Thick Film Resistor Using SnO2 Nanoparticles, Thin Solid Films. 295 (1997) 271-276.
DOI: 10.1016/s0040-6090(96)09152-3
Google Scholar
[4]
N.S. Baik, G. Sakai, N. Miura, N. Yamazoe, Hydrothermally Treated Sol Solution of Tin Oxide for Thin-film Gas Sensor, Sens. Actuators, B. 63(2000) 74-79.
DOI: 10.1016/s0925-4005(99)00513-4
Google Scholar
[5]
M.S. Kwak, J.H. Lee, J.S. Hwang, C.O. Park, NOx Sensing Characteristics of Ba2WO5 at An Elevated Temperatures, Metals and Materials. 5 (1999) 351-355.
DOI: 10.1007/bf03187757
Google Scholar
[6]
V. Lantto, T.T. Rantala, T.S. Rantala, Atomistic Understanding of Semiconductor Gas Sensors, J. Eur. Ceram. Soc. 21 (1999) 1961−(1965).
DOI: 10.1016/s0955-2219(01)00151-0
Google Scholar
[7]
T.S. Rantala, T.T. Rantala, V. Lantto, Computational Studies for the Interpretation of Gas Response of SnO2 (110) Surface, Sens. Actuators, B. 65 (2000) 375−378.
DOI: 10.1016/s0925-4005(99)00292-0
Google Scholar
[8]
T.S. Rantala, T.T. Rantala, V. Lantto, Surface Relaxation of the (110) Face of Rutile SnO2, Surf. Sci. 420 (19990 103−109.
DOI: 10.1016/s0039-6028(98)00833-4
Google Scholar
[9]
J. Oviedo, M.J. Gillan, Reconstructions of Strongly Reduced SnO2 (110) Studied by First-principles Methods, Surf. Sci. 513 (2002) 26−36.
DOI: 10.1016/s0039-6028(02)01725-9
Google Scholar
[10]
J. Oviedo, M.J. Gillan, Energetics and Structure of Stoichiometric SnO2 Surfaces Studied by First -principles Calculations, Surf. Sci. 463 (2000) 93−101.
DOI: 10.1016/s0039-6028(00)00612-9
Google Scholar
[11]
I. Manassidis, J. Goniakowski, L.N. Kantorovich, M.J. Gillan, The Structure of the Stoichiometric and Reduced SnO2 (110) Surface, Surf. Sci. 339 (1995) 258−271.
DOI: 10.1016/0039-6028(95)00677-x
Google Scholar
[12]
M.A. Maki-Jaskari, T.T. Rantala, Band Structure and Optical Parameters of the SnO2 (110) Surface, Phys. Rev. B. 64 (2001) 075407.
Google Scholar
[13]
T.T. Rantala, T.S. Rantala, V. Lantto, Electronic Structure of SnO2 (110) Surface, Mater. Sci. Semicond. Process. 3 (2000) 103−107.
DOI: 10.1016/s1369-8001(00)00021-4
Google Scholar
[14]
M.A. Maki-Jaskari, T.T. Rantala, Theoretical Study of Oxygen-Deficient SnO2 (110) Surface, Phys. Rev. B. 65 (2002) 245428.
Google Scholar
[15]
M.A. Maki-Jaskari, T.T. Rantala, V.V. Golovanov, Computational Study of Charge Accumulation at SnO2 (110) Surface, Surf. Sci. 577 (2005) 127−138.
DOI: 10.1016/j.susc.2005.01.004
Google Scholar
[16]
J. Oviedo, M.J. Gillan, First-principles Study of the Interaction of Oxygen with the SnO2 (110) Surface, Surf. Sci. 490 (2001) 221−236.
DOI: 10.1016/s0039-6028(01)01372-3
Google Scholar
[17]
F.R. Sensato, Periodic Study on the Structural and Electronic Properties of Bulk, Oxidized and Reduced SnO2 (110) Surfaces and the Interaction with O2. Surf. Sci. 511 (2002) 408−420.
Google Scholar
[18]
Y.B. Xue, Z.A. Tang, Density Functional Study of the Structure of SnO2 (110) Surface and the Property of Oxygen Adsorption, Chin. J. Sens. Actuators. 20 (2007) 2364−2368.
Google Scholar
[19]
J.B.L. Martins, E. Longo, J. Andres, C.A. Taff, Theoretical Study of Cluster Models and Molecular Hydrogen Interaction with SnO2 (110) Surfaces, J. Mol. Struct. 335 (1995) 167−174.
DOI: 10.1016/0166-1280(94)03997-y
Google Scholar
[20]
M. Calatayud, J. Andres, A. Beltran, A Theoretical Analysis of Adsorption and Dissociation of CH3OH on the Stoichiometric SnO2(110) Surface, Surf. Sci. 430 (1999) 213−222.
DOI: 10.1016/s0039-6028(99)00507-5
Google Scholar
[21]
J.D. Prades, A. Cirera, J.R. Morante, J.M. Pruneda, P. Ordejon, Ab Initio Study of NOx Compounds Adsorption on SnO2 Surface, Sens. Actuators, B. 126 (2007) 62−67.
DOI: 10.1016/j.snb.2006.10.040
Google Scholar
[22]
M. Melle-Franco, G. Pacchioni, CO Adsorption on SnO2 (110): Cluster and Periodic Ab Initio Calculations, Surf. Sci. 461 (2000) 54−66.
DOI: 10.1016/s0039-6028(00)00528-8
Google Scholar
[23]
F. Ciriaco, L. Cassidei, M. Cacciatore, G. Petrella, First Principle Study of Processes Modifying the Conductivity of Substoichiometric SnO2 Materials upon Adsorption of CO from Atmosphere, Chem. Phys. 303 (2004) 55−61.
DOI: 10.1016/j.chemphys.2004.05.005
Google Scholar
[24]
Y.B. Xue, Z.A. Tanga, Density Functional Study of the Interaction of CO with Undoped and Pd Uoped SnO2 (110) Surface, Sens. Actuators, B. 138 (2009) 108−112.
DOI: 10.1016/j.snb.2009.02.030
Google Scholar
[25]
N. Bârsan, M. Schweizer-Berberich, W. Göpel, Fundamentals and Practical Applications to Design Nanoscaled SnO2 Gas Sensors: A Status Report, Fresenius J. Anal. Chem. 365 (1999) 287−304.
DOI: 10.1007/s002160051490
Google Scholar
[26]
K. Ihokura, J. Watson, The Stannic Oxide Gas Sensor Principles and Applications, Chemical Rubber Company Press: Florida, (1994).
Google Scholar
[27]
W. Göpel, K.D. Schierbaum, SnO2 Sensors: Current Status and Future Prospects, Sens. Actuators, B. 26 (1995) 1−12.
DOI: 10.1016/0925-4005(94)01546-t
Google Scholar
[28]
D. Williams, Semiconducting Oxides as Gas-sensitive Resistors, Sens. Actuators, B. 57 (1999) 1−16.
Google Scholar
[29]
M. Che, A.J. Tench, Characterization and Reactivity of Mononuclear Oxygen Species on Oxide Surfaces, Adv. Catal. 31 (1982) 77−133.
DOI: 10.1016/s0360-0564(08)60453-8
Google Scholar
[30]
J.P. Joly, L. Gonzalez-Cruz, Y. Arnaud, Désorption à Température Programmée de L'oxygène Labile de SnO2, Bull. Soc. Chim. Fr. 1 (1986) 11−17.
Google Scholar
[31]
G.L. Shen, R. Casanova, G. Thornton, Interaction of O2 with SnO2 (110)1 × 1 and 4 × 1, Vacuum. 43 (1992)1129−1131.
DOI: 10.1016/0042-207x(92)90350-6
Google Scholar
[32]
Y. Nagasawa, T. Choso, T. Karasuda, S. Shimomura, F. Ouyang, K. Tabata, Y. Yamaguchi, Photoemission Study of the Interaction of A Reduced Thin Film SnO2 with Oxygen, Surf. Sci. 433 (1999) 226−229.
DOI: 10.1016/s0039-6028(99)00044-8
Google Scholar
[33]
S.C. Chang, Oxygen Chemisorption on Tin Oxide: Correlation between Electrical Conductivity and EPR Measurements, J. Vac. Sci. Technol. 17 (1980) 366−369.
DOI: 10.1116/1.570389
Google Scholar
[34]
G. Heiland, D. Kohl, Chemical Sensor Technology, Kodansha, Tokyo, (1988).
Google Scholar
[35]
N. Bârsan, U. Weimar, Understanding the Fundamental Principles of Metal Oxide Based Gas Sensors; the Example of CO Sensing with SnO2 Sensors in the Presence of Humidity, J. Phys.: Condens. Matter. 15 (2003) R813−R839.
DOI: 10.1088/0953-8984/15/20/201
Google Scholar
[36]
J. Huang, N. Matsunaga, K. Shimanoe, N. Yamazoe, T. Kunitake, Nanotubular SnO2 Templated by Cellulose Fibers: Synthesis and Gas Sensing, Chem. Mater. 17 (2005) 3513−3518.
DOI: 10.1021/cm047819m
Google Scholar
[37]
S.R. Morrison, Selectivity in Semiconductor Gas Sensors, Sens. Actuators, B. 12 (1987) 425−440.
DOI: 10.1016/0250-6874(87)80061-6
Google Scholar
[38]
S.H. Hahn, N. Bârsan, U. Weimar, S.G. Ejakov, J.H. Visser, R.E. Soltis, CO Sensing with SnO2 Thick Film Sensors: Role of Oxygen and Water Vapour, Thin Solid Films. 436 (2003) 17−24.
DOI: 10.1016/s0040-6090(03)00520-0
Google Scholar
[39]
N. Bârsan, M. Hübner, U. Weimar, Conduction Mechanisms in SnO2 Based Polycrystalline Thick Film Gas Sensors Exposed to CO and H2 in Different Oxygen Backgrounds, Sens. Actuators, B. 157 (2011) 510−517.
DOI: 10.1016/j.snb.2011.05.011
Google Scholar
[40]
N. Bârsan, M. Hübner, U. Weimar, Conduction Model of Metal Oxide Gas Sensors, J. Electroceram. 7 (2001) 143−167.
Google Scholar
[41]
Y.H. Duan, Electronic Properties and Stabilities of Bulk and Low-index Surfaces of SnO in Comparison with SnO2: A Firstprinciples Sensity Functional Approach with an Empirical Correction of Van Der Waals Interactions, Phys. Rev. B. 77 (2008).
DOI: 10.1103/physrevb.77.045332
Google Scholar
[42]
J.C. Garcia, L.V.C. Assali, J.F. Justo, The Structural and Electronic Properties of Tin Oxide Nanowires: An Ab Initio Investigation, J. Phys. Chem. C. 116 (2012) 13382−13387.
DOI: 10.1021/jp300793e
Google Scholar
[43]
M. Batzill, U. Diebold, The Surface and Materials Science of Tin Oxide, Prog. Surf. Sci. 79 (2005) 47−154.
Google Scholar
[44]
M. Batzill, K. Katsiev, J.M. Burst, Y. Losovyj, W. Bergermayer, I. Tanaka, U. Diebold, Tuning Surface Properties of SnO2 (101) by Reduction, J. Phys. Chem. Solids. 67 (2006) 1923−(1929).
DOI: 10.1016/j.jpcs.2006.05.042
Google Scholar
[45]
W. Bergermayer, I. Tanka, Reduced SnO2 Surfaces by First-Principles Calculations, Appl. Phys. Lett. 84 (2004) 909−911.
DOI: 10.1063/1.1646460
Google Scholar
[46]
M. Batzill, K. Katsiev, J.M. Burst, U. Diebold, A.M. Chaka, B. Delley, Gas-phase-dependent Properties of SnO2 (110), (100), and (101) Single-crystal Surfaces: Structure, Composition, and Electronic Properties, Phys. Rev. B. 72 (2005) 165414.
DOI: 10.1103/physrevb.72.165414
Google Scholar
[47]
A.V. Bandura, J.D. Kubicki, J.O. Sofo, Comparisons of Multilayer H2O Adsorption onto the (110) Surfaces of α-TiO2 and SnO2 as Calculated with Density Functional Theory, J. Phys. Chem. B. 112 (2008) 11616−11624.
DOI: 10.1021/jp711763y
Google Scholar
[48]
J. Yue, X.C. Jiang, A.B. Yu, Adsorption of the OH Group on SnO2 (110) Oxygen Bridges: A Molecular Dynamics and Density Functional Theory Study, J. Phys. Chem. C. 117 (2013) 9962−9969.
DOI: 10.1021/jp4022294
Google Scholar
[49]
X.F. Wang, H.W. Qin, Y.P. Chen, J.F. Hu, Sensing Mechanism of SnO2 (110) Surface to CO: Density Functional Theory Calculations, J. Phys. Chem. C. 118 (2014) 28548−28561.
DOI: 10.1021/jp501880r
Google Scholar
[50]
Y.P. Chen, X.F. Wang, C.M. Shi, L. Li, H.W. Qin, J.F. Hu, Sensing Mechanism of SnO2(110) Surface to H2 Density Functionaltheory Calculations, Sens. Actuators, B. 22 (2015), 279–287.
DOI: 10.1016/j.snb.2015.05.061
Google Scholar
[51]
B. Delley, An All-electron Numerical Method for Solving the Local Density Functional for Polyatomic Molecules, J. Chem. Phys. 92 (1990) 508−517.
DOI: 10.1063/1.458452
Google Scholar
[52]
B. Delley, From Molecules to Solids with the DMol Approach, J. Chem. Phys. 113 (2000) 7756−7764.
Google Scholar
[53]
R.S. Mulliken, Electronic Population Analysis on LCAO-MO Molecular Wave Functions, I. J. Chem. Phys. 23 (1995)1833−1840.
DOI: 10.1063/1.1740588
Google Scholar
[54]
Y. Yamaguchi, Y. Nagasawa, S. Shimomura, K. Tabata, E. Suzuki, A Density Functional Theory Study of the Interaction of Oxygen with a Reduced SnO2 (110) Surface, Chem. Phys. Lett. 316 (2000) 477-482.
DOI: 10.1016/s0009-2614(99)01365-2
Google Scholar
[55]
Y. Yamaguchi, K. Tabata, E. Suzuki, Density Functional Theory Calculations for the Interaction of Oxygen with Reduced M/SnO2 (110) (M=Pd, Pt) Surfaces, Surf. Sci. 526 (2003) 149-158.
DOI: 10.1016/s0039602802026006
Google Scholar
[56]
J.P. Joly, L. Gonzalez-Cruz, Y. Arnaud, Désorption à Température Programmée de L'oxygène Labile de SnO2, Bull. Soc. Chim. Fr. 1 (1986) 11-17.
Google Scholar
[57]
B. Ruhland, T. Becker, G. Müller, Gas-kinetic Interactions of Nitrous Oxides with SnO2 Surfaces, Sens. Actuators, B. 50 (1998) 85–94.
DOI: 10.1016/s0925-4005(98)00160-9
Google Scholar
[58]
A. Sharma, M. Tomar, V. Gupta, SnO2 Thin Film Sensor with Enhanced Response for NO2 Gas at Lower Temperatures, Sens. Actuators, B. 156 (2011) 743– 752.
DOI: 10.1016/j.snb.2011.02.033
Google Scholar
[59]
J. P. Perdew, K. Burke, M Ernzerhof, ERRATA: Generalized gradient approximation made simple, Phys. Rev. Lett., 77 (1996) 3865.
DOI: 10.1103/physrevlett.77.3865
Google Scholar