[1]
L. Xiong, Y. Hua, C. Xu, J. Li, Y. Li, Q. Zhang, Z. Zhou, Y. ZhangJ. Ru: Effect of CaO addition on preparation of ferrotitanium from ilmenite by electrochemical reduction in CaCl2NaCl molten salt, J. Alloy. Compd., 676(2016) 383-389.
DOI: 10.1016/j.jallcom.2016.03.195
Google Scholar
[2]
V.R. Manga, N. Swinteck, S. Bringuier, P. Lucas, P. DeymierK. Muralidharan: Interplay between structure and transport properties of molten salt mixtures of ZnCl2–NaCl–KCl: A molecular dynamics study, J. Chem. Phys., 144(9) (2016) 094501.
DOI: 10.1063/1.4942588
Google Scholar
[3]
Y. Jiang, Y. Sun, M. Liu, F. BrunoS. Li: Eutectic Na2CO3–NaCl salt: A new phase change material for high temperature thermal storage, Sol. Energ. Mat. Sol. C., 152(2016) 155-160.
DOI: 10.1016/j.solmat.2016.04.002
Google Scholar
[4]
Q. Wang, J. Song, G. Hu, X. Zhu, J. Hou, S. JiaoH. Zhu: The Equilibrium Between Titanium Ions and Titanium Metal in NaCl-KCl Equimolar Molten Salt, Metall. Mater. Trans. B, 44(4) (2013) 906-913.
DOI: 10.1007/s11663-013-9853-5
Google Scholar
[5]
T. Hiraki, T. Miki, K. Nakajima, K. Matsubae, S. NakamuraT. Nagasaka: Thermodynamic Analysis for the Refining Ability of Salt Flux for Aluminum Recycling, Materials, 7(8) (2014) 5543.
DOI: 10.3390/ma7085543
Google Scholar
[6]
J. Xu, J. ZhangZ. Shi, Extracting Aluminum from Aluminum Alloys in AlCl3-NaCl Molten Salts, High Temp. Mat. Pr-isr, 32(4)(2013) 367-373.
DOI: 10.1515/htmp-2012-0152
Google Scholar
[7]
J.W. Gao, D. Shu, J. WangB.D. Sun: Effects of Na2B4O7 on the elimination of iron from aluminum melt, Scripta Mater., 57(3) (2007) 197-200.
DOI: 10.1016/j.scriptamat.2007.04.009
Google Scholar
[8]
B.P. Mohanty, S. SubramanianJ. Hajra: Electro slag refining of commercial aluminum, T. Indian I. Metals, 39(6) (1986) 646-647.
Google Scholar
[9]
G. Hoyle, Electroslag processes: principles and practice, Elsevier, (1983).
Google Scholar
[10]
D. Lane: Electro-Slag Refining, Steel Times, 207(6) (1979).
Google Scholar
[11]
B. Okai: Mode Instability in NaCl Structure under Pressure, J. Phys. Soc. Jpn., 52(7) (1983) 2289-2292.
DOI: 10.1143/jpsj.52.2289
Google Scholar
[12]
D.S. Puri, M.P. Verma: Many-body effects on the third-order elastic constants and pressure derivatives of the second-order-elastic constants of NaCl-structure alkali halides, Phys. Rev. B, 15(4) (1977) 2337-2347.
DOI: 10.1103/physrevb.15.2337
Google Scholar
[13]
I.M. Boswarva: Further calculations of the energies of formation of Schottky defects in NaCl structure ionic crystals, J. Phys. C: Solid State Phys., 5(1) (1972) L5.
DOI: 10.1088/0022-3719/5/1/002
Google Scholar
[14]
E.A. Perez‐Albuerne, H.G. Drickamer: Effect of High Pressures on the Compressibilities of Seven Crystals Having the NaCl or CsCl Structure, J. Chem. Phys., 43(4) (1965) 1381-1387.
DOI: 10.1063/1.1696929
Google Scholar
[15]
M.P. Tosi, F.G. Fumi: Ionic sizes and born repulsive parameters in the NaCl-type alkali halides—II, J. Phys. Chem. Solids, 25(1) (1964) 45-52.
DOI: 10.1016/0022-3697(64)90160-x
Google Scholar
[16]
K. Suzuki: X-ray Studies on the Structures of Solid Solutions NaCl-CaCl2 II. Structures of {111} and {310} Plate-Zones, J. Phys. Soc. Jpn., 10(9) (1955) 794-804.
DOI: 10.1143/jpsj.10.794
Google Scholar
[17]
F.G. Edwards, J.E. Enderby, R.A. HoweD.I. Page: The structure of molten sodium chloride, J. Phys. C: Solid State Phys., 8(21) (1975) 3483-3490.
DOI: 10.1088/0022-3719/8/21/018
Google Scholar
[18]
Y. Ishii, K. Sato, M. Salanne, P.A. MaddenN. Ohtori: Thermal Conductivity of Molten Alkali Metal Fluorides (LiF, NaF, KF) and Their Mixtures, J. Phys. Chem. B, 118(12) (2014) 3385-3391.
DOI: 10.1021/jp411781n
Google Scholar
[19]
N. Galamba, B.J. Costa Cabral: First principles molecular dynamics of molten NaCl, J. Chem. Phys., 126(12) (2007) 124502.
DOI: 10.1063/1.2711187
Google Scholar
[20]
A. Bengtson, H.O. Nam, S. Saha, R. SakidjaD. Morgan: First-principles molecular dynamics modeling of the LiCl–KCl molten salt system, Comp. Mater. Sci., 83(2014) 362-370.
DOI: 10.1016/j.commatsci.2013.10.043
Google Scholar
[21]
G. Sun, J. Kürti, P. Rajczy, M. Kertesz, J. HafnerG. Kresse: Performance of the Vienna ab initio simulation package (VASP) in chemical applications, J. Mol. Struc. -theochem, 624(1–3) (2003) 37-45.
DOI: 10.1016/s0166-1280(02)00733-9
Google Scholar
[22]
N. Hirosaki, S. OgataC. Kocer: Ab initio calculation of the crystal structure of the lanthanide Ln2O3 sesquioxides, J. Alloy. Comp., 351(1–2) (2003) 31-34.
DOI: 10.1016/s0925-8388(02)01043-5
Google Scholar
[23]
H. Peelaers, C.G. Van de Walle: Effects of strain on band structure and effective masses in MoS2, Phys. Rev. B, 86(24) (2012) 241401.
Google Scholar