Investigation on NaCl Structure and Properties in External Electric Field

Article Preview

Abstract:

Investigation on structure and electronic structure under external electric field is a very interesting subject. To investigate the evolution of structure and properties from the perspective of electronic structure, the configuration of NaCl crystal has been calculated with the first principles in different external electric field. The system of energy, bond length, geometrical, radial distribution function, difference charge density, and density of states has been carefully examined. The analysis of the calculated results suggested that, with the increasing of external electric field, the system energy presents the roughly increases to a maximum value then begin to decrease, the long range structure become more disordered, the geometrical structure is significantly influenced, the iconicity of NaCl enhances.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1940-1946

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Xiong, Y. Hua, C. Xu, J. Li, Y. Li, Q. Zhang, Z. Zhou, Y. ZhangJ. Ru: Effect of CaO addition on preparation of ferrotitanium from ilmenite by electrochemical reduction in CaCl2NaCl molten salt, J. Alloy. Compd., 676(2016) 383-389.

DOI: 10.1016/j.jallcom.2016.03.195

Google Scholar

[2] V.R. Manga, N. Swinteck, S. Bringuier, P. Lucas, P. DeymierK. Muralidharan: Interplay between structure and transport properties of molten salt mixtures of ZnCl2–NaCl–KCl: A molecular dynamics study, J. Chem. Phys., 144(9) (2016) 094501.

DOI: 10.1063/1.4942588

Google Scholar

[3] Y. Jiang, Y. Sun, M. Liu, F. BrunoS. Li: Eutectic Na2CO3–NaCl salt: A new phase change material for high temperature thermal storage, Sol. Energ. Mat. Sol. C., 152(2016) 155-160.

DOI: 10.1016/j.solmat.2016.04.002

Google Scholar

[4] Q. Wang, J. Song, G. Hu, X. Zhu, J. Hou, S. JiaoH. Zhu: The Equilibrium Between Titanium Ions and Titanium Metal in NaCl-KCl Equimolar Molten Salt, Metall. Mater. Trans. B, 44(4) (2013) 906-913.

DOI: 10.1007/s11663-013-9853-5

Google Scholar

[5] T. Hiraki, T. Miki, K. Nakajima, K. Matsubae, S. NakamuraT. Nagasaka: Thermodynamic Analysis for the Refining Ability of Salt Flux for Aluminum Recycling, Materials, 7(8) (2014) 5543.

DOI: 10.3390/ma7085543

Google Scholar

[6] J. Xu, J. ZhangZ. Shi, Extracting Aluminum from Aluminum Alloys in AlCl3-NaCl Molten Salts, High Temp. Mat. Pr-isr, 32(4)(2013) 367-373.

DOI: 10.1515/htmp-2012-0152

Google Scholar

[7] J.W. Gao, D. Shu, J. WangB.D. Sun: Effects of Na2B4O7 on the elimination of iron from aluminum melt, Scripta Mater., 57(3) (2007) 197-200.

DOI: 10.1016/j.scriptamat.2007.04.009

Google Scholar

[8] B.P. Mohanty, S. SubramanianJ. Hajra: Electro slag refining of commercial aluminum, T. Indian I. Metals, 39(6) (1986) 646-647.

Google Scholar

[9] G. Hoyle, Electroslag processes: principles and practice, Elsevier, (1983).

Google Scholar

[10] D. Lane: Electro-Slag Refining, Steel Times, 207(6) (1979).

Google Scholar

[11] B. Okai: Mode Instability in NaCl Structure under Pressure, J. Phys. Soc. Jpn., 52(7) (1983) 2289-2292.

DOI: 10.1143/jpsj.52.2289

Google Scholar

[12] D.S. Puri, M.P. Verma: Many-body effects on the third-order elastic constants and pressure derivatives of the second-order-elastic constants of NaCl-structure alkali halides, Phys. Rev. B, 15(4) (1977) 2337-2347.

DOI: 10.1103/physrevb.15.2337

Google Scholar

[13] I.M. Boswarva: Further calculations of the energies of formation of Schottky defects in NaCl structure ionic crystals, J. Phys. C: Solid State Phys., 5(1) (1972) L5.

DOI: 10.1088/0022-3719/5/1/002

Google Scholar

[14] E.A. Perez‐Albuerne, H.G. Drickamer: Effect of High Pressures on the Compressibilities of Seven Crystals Having the NaCl or CsCl Structure, J. Chem. Phys., 43(4) (1965) 1381-1387.

DOI: 10.1063/1.1696929

Google Scholar

[15] M.P. Tosi, F.G. Fumi: Ionic sizes and born repulsive parameters in the NaCl-type alkali halides—II, J. Phys. Chem. Solids, 25(1) (1964) 45-52.

DOI: 10.1016/0022-3697(64)90160-x

Google Scholar

[16] K. Suzuki: X-ray Studies on the Structures of Solid Solutions NaCl-CaCl2 II. Structures of {111} and {310} Plate-Zones, J. Phys. Soc. Jpn., 10(9) (1955) 794-804.

DOI: 10.1143/jpsj.10.794

Google Scholar

[17] F.G. Edwards, J.E. Enderby, R.A. HoweD.I. Page: The structure of molten sodium chloride, J. Phys. C: Solid State Phys., 8(21) (1975) 3483-3490.

DOI: 10.1088/0022-3719/8/21/018

Google Scholar

[18] Y. Ishii, K. Sato, M. Salanne, P.A. MaddenN. Ohtori: Thermal Conductivity of Molten Alkali Metal Fluorides (LiF, NaF, KF) and Their Mixtures, J. Phys. Chem. B, 118(12) (2014) 3385-3391.

DOI: 10.1021/jp411781n

Google Scholar

[19] N. Galamba, B.J. Costa Cabral: First principles molecular dynamics of molten NaCl, J. Chem. Phys., 126(12) (2007) 124502.

DOI: 10.1063/1.2711187

Google Scholar

[20] A. Bengtson, H.O. Nam, S. Saha, R. SakidjaD. Morgan: First-principles molecular dynamics modeling of the LiCl–KCl molten salt system, Comp. Mater. Sci., 83(2014) 362-370.

DOI: 10.1016/j.commatsci.2013.10.043

Google Scholar

[21] G. Sun, J. Kürti, P. Rajczy, M. Kertesz, J. HafnerG. Kresse: Performance of the Vienna ab initio simulation package (VASP) in chemical applications, J. Mol. Struc. -theochem, 624(1–3) (2003) 37-45.

DOI: 10.1016/s0166-1280(02)00733-9

Google Scholar

[22] N. Hirosaki, S. OgataC. Kocer: Ab initio calculation of the crystal structure of the lanthanide Ln2O3 sesquioxides, J. Alloy. Comp., 351(1–2) (2003) 31-34.

DOI: 10.1016/s0925-8388(02)01043-5

Google Scholar

[23] H. Peelaers, C.G. Van de Walle: Effects of strain on band structure and effective masses in MoS2, Phys. Rev. B, 86(24) (2012) 241401.

Google Scholar