[1]
Q. Huo, R. Leon, P.M. Petroff, G.D. Stucky, Mesostructure design with Gemini surfactants-supercage formation in a 3-dimensional hexagonal array, Science, 268 (1995), 1324-1327.
DOI: 10.1126/science.268.5215.1324
Google Scholar
[2]
D. Zhao, Q. Huo, J. Feng, B.F. Chmelka, G.D. Stucky, Nonionic triblock and star diblockcopolymer and oligomertic surfactant syntheses of highly ordered,hydrothermal stable, mesoporous silica structuresJ. Am. Chem. Soc. 120 (1998) 6024-6036.
DOI: 10.1021/ja974025i
Google Scholar
[3]
D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chemlka, G.D. Stucky, Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores, Science, 279 (1998) 548-552.
DOI: 10.1126/science.279.5350.548
Google Scholar
[4]
A. Galmaeua, H. Cmabon, F. Renzo, R. Ryoo, M. Choi, F. Fajula, Microporosity and connections between pores in SBA-15 mesostructured silicas as a function of the temperature of synthesis, New J. Chem. 27 (2003) 73-79.
DOI: 10.1039/b207378c
Google Scholar
[5]
M. Imperor-Clerc, P. Davidson, A. Davidson, Existence of a microporous corona around the mesopores of silica-based SBA-15 materials templated by triblock copolymers, J. Am. Chem. Soc. 122 (2000) 11925-11933.
DOI: 10.1021/ja002245h
Google Scholar
[6]
C. Cai, H. Zhang, X. Zhong, L.W. Hou, Ultrasound enhanced heterogeneous activation of peroxymonosulfate by a bimetallic Fe-Co/SBA-15 catalyst for the degradation of Orange II in water, J. Hazard. Mater. 283 (2014) 70-79.
DOI: 10.1016/j.jhazmat.2014.08.053
Google Scholar
[7]
X.F. Li, X. Liu, L.L. Xu, Y.Z. Wen, J.Q. Ma, Z.C. Wu, Highly dispersed Pd/PdO/Fe2O3 nanoparticles in SBA-15 for Fenton-like processes: confinement and synergistic effects, Appl. Catal. B-Environ. 165 (2015) 79-86.
DOI: 10.1016/j.apcatb.2014.09.071
Google Scholar
[8]
M. Ojeda, A.M. Balu, V. Barron, A. Pineda, A.G. Coleto, A.A. Romero, R. Luque, Solventless mechanochemical synthesis of magnetic functionalized catalytically active mesoporous SBA-15 nanocomposites, J. Mater. Chem. 2 (2014) 387-393.
DOI: 10.1039/c3ta13564k
Google Scholar
[9]
N.Y. He, S.L. Bao, Q.H. Xu, Fe-containing mesoporous molecular sieves materials: very active Friedel-Crafts alkylation catalysts, Appl. Catal. A 169 (1998) 29-36.
DOI: 10.1016/s0926-860x(97)00347-5
Google Scholar
[10]
K. Bachari, J.M.M. Millet, B. Benaichouba, O. Cherifi, F. Figueras, Benzylation of benzene by benzyl chloride over iron mesoporous molecular sieves materials, J. Catal. 221 (2004) 55-61.
DOI: 10.1016/s0021-9517(03)00295-1
Google Scholar
[11]
Y.C. Du, S. Liu, Y.Y. Ji, Y.L. Zhang, F.J. Liu, Q. Gao, F.S. Xiao, Highly efficient synthesis of Fe-containing mesoporous materials by using semi-fluorinated surfactant and their high activities in Friedel–Crafts alkylations, Catal. Today, 131 (2008).
DOI: 10.1016/j.cattod.2007.10.021
Google Scholar
[12]
C.R. Xiong, Q.L. Chen, W.R. Lu, H.X. Gao, W.K. Lu, Z. Gao, Novel Fe-based complex oxide catalysts for hydroxylation of phenol, Catal. Lett 69 (2000) 231-236.
Google Scholar
[13]
Y.C. Zou, X.J. Meng, Y, Yu, M. Yang, K.F. Lin, D.Z. Jiang, F.S. Xiao, Chin. J. Catal. 24 (2003), 624-630.
Google Scholar
[14]
H. Liu, Z.G. Wang, H. Li, Chin. J. Catal. 28 (2007) 222-227.
Google Scholar
[15]
Y. Wang, Q.H. Zhang, T. Shishido, K. Takehira, Characterizations of Iron-Containing MCM-41 and Its Catalytic Properties in Epoxidation of Styrene with Hydrogen Peroxide, J. Catal. 209 (2002) 186-196.
DOI: 10.1006/jcat.2002.3607
Google Scholar
[16]
P. Selvam, S.K. Mohapatra, Thermally stable trivalent iron-substituted hexagonal mesoporous aluminophosphate (FeHMA) molecular sieves: Synthesis, characterization, and catalytic properties, J. Catal. 238 (2006) 88-66.
DOI: 10.1016/j.jcat.2005.12.005
Google Scholar
[17]
A. Vinu, T. Krithiga, V. Murugesan, M. Hartmann, Direct synthesis of novel FeSBA-1 cubic mesoporous catalyst and its high activity in the tert-butylation of phenol, Adv. Mater. 16 (2004) 1817-1821.
DOI: 10.1002/adma.200400229
Google Scholar
[18]
H.Y. Chen, W.M.H. Sachtler, Activity and durability of Fe/ZSM-5 catalysts for lean burn NOx reduction in the presence of water vapor, Catal. Today, 42 (1998) 73-83.
DOI: 10.1016/s0920-5861(98)00078-9
Google Scholar
[19]
V.K. Tomer, R. Malik, S. Jangra, S.P. Nehra, S. Duhan, One pot direct synthesis of mesoporous SnO2/SBA-15 nanocomposite by the hydrothermal method, Mater. Lett. 132 (2014) 228-230.
DOI: 10.1016/j.matlet.2014.06.088
Google Scholar
[20]
Z.C. Miao, H.H. Zhao, J. Yang, J. Zhao, H.L. Song, L.J. Chou, One-pot synthesis of ordered mesoporous transition metal-zirconium oxophosphate composites with excellent textural and catalytic properties, New J. Chem. 39 (2015) 1322-1329.
DOI: 10.1039/c4nj01227e
Google Scholar
[21]
K. Assaker, T. Benamor, L. Michelin, B. Lebeau, C. Marichal, M.J. Stebe, J.L. Blin, Mesoporous titania with anatase walls by flash induction calcination, Micropor. Mesopor. Mater. 201 (2015) 43-49.
DOI: 10.1016/j.micromeso.2014.09.028
Google Scholar
[22]
M. Kurttepeli, R. Locus, D. Verboekend, F. de Clippel, E. Breynaert, J. Martens, B. Sels, S. Bals, Synthesis of aluminum-containing hierarchical mesoporous materials with columnar mesopore ordering by evaporation induced self assembly, Micropor. Mesopor. Mater. 234 (2016).
DOI: 10.1016/j.micromeso.2016.07.002
Google Scholar
[23]
J.S. Li, Y.S. Lin, Facile synthesis of ordered mesoporous silica with high γ-Fe2O3 loading via sol-gel process, J. Mater. Sci. 43 (2008) 6359-6365.
DOI: 10.1007/s10853-008-2900-y
Google Scholar
[24]
Y.G. Wang, J.W. Ren, X.H. Liu, Y.Q. Wang, Y. Guo, Y.L. Guo, G. Z. Liu, Facile synthesis of ordered magnetic mesoporous γ-Fe2O3/SiO2 nanocomposites with diverse mesostructures, J. Colloid Interf. Sci. 326 (2008) 158-165.
DOI: 10.1016/j.jcis.2008.07.012
Google Scholar