Catalytic Activity of Fe-SBA-15 Prepared by Evaporation-Induced Self-Assembly (EISA) Method

Article Preview

Abstract:

Fe-SBA-15 materials with different Fe content have been prepared using tetraethyl orthosilicate (TEOS) and iron nitrate (Fe (NO3)H2O as precursors and Pluronic P123 as structure directing agent through evaporation-induced self-assembly (EISA) method. The materials were characterized by nitrogen sorption, powder X-ray diffraction and TEM. All the Fe-SBA-15 samples appeared ordered 2D hexagonal mesostructure. The BET surface area and pore diameter were about 500 m2/g and 4 nm respectively. In the reaction of phenol hydroxylation to dihydroxybenzenes, the Fe-SBA-15 materials showed good catalytic activity, giving 20.2% of phenol conversion, 58.2% of selectivity for o-dihydroxy benzene and 41.8% of selectivity for p-dihydroxy benzene. After five cycles, the product yield was 25.2%, while selectivities of o-dihydroxy benzene and p-dihydroxy benzene were 58.2% and 41.8%, respectively. All these findings indicated the potential of Fe-SBA-15-10 could be used as a cost-effective, environment-friendly catalyst.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1916-1922

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Q. Huo, R. Leon, P.M. Petroff, G.D. Stucky, Mesostructure design with Gemini surfactants-supercage formation in a 3-dimensional hexagonal array, Science, 268 (1995), 1324-1327.

DOI: 10.1126/science.268.5215.1324

Google Scholar

[2] D. Zhao, Q. Huo, J. Feng, B.F. Chmelka, G.D. Stucky, Nonionic triblock and star diblockcopolymer and oligomertic surfactant syntheses of highly ordered,hydrothermal stable, mesoporous silica structuresJ. Am. Chem. Soc. 120 (1998) 6024-6036.

DOI: 10.1021/ja974025i

Google Scholar

[3] D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chemlka, G.D. Stucky, Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores, Science, 279 (1998) 548-552.

DOI: 10.1126/science.279.5350.548

Google Scholar

[4] A. Galmaeua, H. Cmabon, F. Renzo, R. Ryoo, M. Choi, F. Fajula, Microporosity and connections between pores in SBA-15 mesostructured silicas as a function of the temperature of synthesis, New J. Chem. 27 (2003) 73-79.

DOI: 10.1039/b207378c

Google Scholar

[5] M. Imperor-Clerc, P. Davidson, A. Davidson, Existence of a microporous corona around the mesopores of silica-based SBA-15 materials templated by triblock copolymers, J. Am. Chem. Soc. 122 (2000) 11925-11933.

DOI: 10.1021/ja002245h

Google Scholar

[6] C. Cai, H. Zhang, X. Zhong, L.W. Hou, Ultrasound enhanced heterogeneous activation of peroxymonosulfate by a bimetallic Fe-Co/SBA-15 catalyst for the degradation of Orange II in water, J. Hazard. Mater. 283 (2014) 70-79.

DOI: 10.1016/j.jhazmat.2014.08.053

Google Scholar

[7] X.F. Li, X. Liu, L.L. Xu, Y.Z. Wen, J.Q. Ma, Z.C. Wu, Highly dispersed Pd/PdO/Fe2O3 nanoparticles in SBA-15 for Fenton-like processes: confinement and synergistic effects, Appl. Catal. B-Environ. 165 (2015) 79-86.

DOI: 10.1016/j.apcatb.2014.09.071

Google Scholar

[8] M. Ojeda, A.M. Balu, V. Barron, A. Pineda, A.G. Coleto, A.A. Romero, R. Luque, Solventless mechanochemical synthesis of magnetic functionalized catalytically active mesoporous SBA-15 nanocomposites, J. Mater. Chem. 2 (2014) 387-393.

DOI: 10.1039/c3ta13564k

Google Scholar

[9] N.Y. He, S.L. Bao, Q.H. Xu, Fe-containing mesoporous molecular sieves materials: very active Friedel-Crafts alkylation catalysts, Appl. Catal. A 169 (1998) 29-36.

DOI: 10.1016/s0926-860x(97)00347-5

Google Scholar

[10] K. Bachari, J.M.M. Millet, B. Benaichouba, O. Cherifi, F. Figueras, Benzylation of benzene by benzyl chloride over iron mesoporous molecular sieves materials, J. Catal. 221 (2004) 55-61.

DOI: 10.1016/s0021-9517(03)00295-1

Google Scholar

[11] Y.C. Du, S. Liu, Y.Y. Ji, Y.L. Zhang, F.J. Liu, Q. Gao, F.S. Xiao, Highly efficient synthesis of Fe-containing mesoporous materials by using semi-fluorinated surfactant and their high activities in Friedel–Crafts alkylations, Catal. Today, 131 (2008).

DOI: 10.1016/j.cattod.2007.10.021

Google Scholar

[12] C.R. Xiong, Q.L. Chen, W.R. Lu, H.X. Gao, W.K. Lu, Z. Gao, Novel Fe-based complex oxide catalysts for hydroxylation of phenol, Catal. Lett 69 (2000) 231-236.

Google Scholar

[13] Y.C. Zou, X.J. Meng, Y, Yu, M. Yang, K.F. Lin, D.Z. Jiang, F.S. Xiao, Chin. J. Catal. 24 (2003), 624-630.

Google Scholar

[14] H. Liu, Z.G. Wang, H. Li, Chin. J. Catal. 28 (2007) 222-227.

Google Scholar

[15] Y. Wang, Q.H. Zhang, T. Shishido, K. Takehira, Characterizations of Iron-Containing MCM-41 and Its Catalytic Properties in Epoxidation of Styrene with Hydrogen Peroxide, J. Catal. 209 (2002) 186-196.

DOI: 10.1006/jcat.2002.3607

Google Scholar

[16] P. Selvam, S.K. Mohapatra, Thermally stable trivalent iron-substituted hexagonal mesoporous aluminophosphate (FeHMA) molecular sieves: Synthesis, characterization, and catalytic properties, J. Catal. 238 (2006) 88-66.

DOI: 10.1016/j.jcat.2005.12.005

Google Scholar

[17] A. Vinu, T. Krithiga, V. Murugesan, M. Hartmann, Direct synthesis of novel FeSBA-1 cubic mesoporous catalyst and its high activity in the tert-butylation of phenol, Adv. Mater. 16 (2004) 1817-1821.

DOI: 10.1002/adma.200400229

Google Scholar

[18] H.Y. Chen, W.M.H. Sachtler, Activity and durability of Fe/ZSM-5 catalysts for lean burn NOx reduction in the presence of water vapor, Catal. Today, 42 (1998) 73-83.

DOI: 10.1016/s0920-5861(98)00078-9

Google Scholar

[19] V.K. Tomer, R. Malik, S. Jangra, S.P. Nehra, S. Duhan, One pot direct synthesis of mesoporous SnO2/SBA-15 nanocomposite by the hydrothermal method, Mater. Lett. 132 (2014) 228-230.

DOI: 10.1016/j.matlet.2014.06.088

Google Scholar

[20] Z.C. Miao, H.H. Zhao, J. Yang, J. Zhao, H.L. Song, L.J. Chou, One-pot synthesis of ordered mesoporous transition metal-zirconium oxophosphate composites with excellent textural and catalytic properties, New J. Chem. 39 (2015) 1322-1329.

DOI: 10.1039/c4nj01227e

Google Scholar

[21] K. Assaker, T. Benamor, L. Michelin, B. Lebeau, C. Marichal, M.J. Stebe, J.L. Blin, Mesoporous titania with anatase walls by flash induction calcination, Micropor. Mesopor. Mater. 201 (2015) 43-49.

DOI: 10.1016/j.micromeso.2014.09.028

Google Scholar

[22] M. Kurttepeli, R. Locus, D. Verboekend, F. de Clippel, E. Breynaert, J. Martens, B. Sels, S. Bals, Synthesis of aluminum-containing hierarchical mesoporous materials with columnar mesopore ordering by evaporation induced self assembly, Micropor. Mesopor. Mater. 234 (2016).

DOI: 10.1016/j.micromeso.2016.07.002

Google Scholar

[23] J.S. Li, Y.S. Lin, Facile synthesis of ordered mesoporous silica with high γ-Fe2O3 loading via sol-gel process, J. Mater. Sci. 43 (2008) 6359-6365.

DOI: 10.1007/s10853-008-2900-y

Google Scholar

[24] Y.G. Wang, J.W. Ren, X.H. Liu, Y.Q. Wang, Y. Guo, Y.L. Guo, G. Z. Liu, Facile synthesis of ordered magnetic mesoporous γ-Fe2O3/SiO2 nanocomposites with diverse mesostructures, J. Colloid Interf. Sci. 326 (2008) 158-165.

DOI: 10.1016/j.jcis.2008.07.012

Google Scholar