[1]
G. Busca, L. Lietti, G. Ramis, F. Berti, Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: A review, Appl. Catal. B-Environ. 18 (1998) 1-36.
DOI: 10.1016/s0926-3373(98)00040-x
Google Scholar
[2]
B. Guan, R. Zhan, H. Lin, Z. Huang, Review of state of the art technologies of selective catalytic reduction of NOx from diesel engine exhaust, Appl. Therm. Eng. 66 (2014) 395-414.
DOI: 10.1016/j.applthermaleng.2014.02.021
Google Scholar
[3]
T.V. Johnson, Review of diesel emissions and control, Int. J. Engine Res. 10 (2009) 275-285.
Google Scholar
[4]
S. Roy, M.S. Hegde, G. Madras, Catalysis for NOx abatement, Appl. Energ. 86 (2009) 2283-2297.
DOI: 10.1016/j.apenergy.2009.03.022
Google Scholar
[5]
A. Marberger, M. Elsener, D. Ferri, O. Kröcher, VOx surface coverage optimization of V2O5/WO3-TiO2 SCR catalysts by variation of the V loading and by aging, Catalysts 5 (2015) 1704-1720.
DOI: 10.3390/catal5041704
Google Scholar
[6]
K.Z. Qiu, J. Song, H. Song, X. Gao, Z.Y. Luo, K.F. Cen, A novel method of microwave heating mixed liquid-assisted regeneration of V2O5-WO3/TiO2 commercial SCR catalysts, Environ. Geochem. Hlth. 37 (2015) 905-914.
DOI: 10.1007/s10653-014-9663-y
Google Scholar
[7]
J.P. Dunn, P.R. Koppula, H.G. Stenger, I.E. Wachs, Oxidation of sulfur dioxide to sulfur trioxide over supported vanadia catalysts, Appl. Catal. B-Environ. 19 (1998) 103-117.
DOI: 10.1016/s0926-3373(98)00060-5
Google Scholar
[8]
J.P. Dunn, H.G. Stenger, I. E Wachs, Oxidation of SO2 over supported metal oxide catalysts, J. Catal. 181 (1999) 233-243.
DOI: 10.1006/jcat.1998.2305
Google Scholar
[9]
M. Yates, J.A. Martín, M.Á. Martín-Luengo, S. Suárez, J. Blanco, N2O formation in the ammonia oxidation and in the SCR process with V2O5-WO3 catalysts, Catal. Today 107 (2005) 120-125.
DOI: 10.1016/j.cattod.2005.07.015
Google Scholar
[10]
M. Koebel, M. Elsener, M. Kleemann, Urea-SCR a promising technique to reduce NOx emissions from automotive diesel engines, Catal. Today 59 (2000) 335-345.
DOI: 10.1016/s0920-5861(00)00299-6
Google Scholar
[11]
X.D. Wu, W.C. Yu, Z.C. Si, W. Duan, Chemical deactivation of V2O5-WO3/TiO2 SCR catalyst by combined effect of potassium and chloride, Front. Env. Sci. Eng. 7 (2013) 420-427.
DOI: 10.1007/s11783-013-0489-0
Google Scholar
[12]
P.G. Smirniotis, D.A. Pena, B.S. Uphade, Low-temperature selective catalytic reduction (SCR) of NO with NH3 by using Mn, Cr, and Cu oxides supported on Hombikat TiO2, Angew. Chem. Int. Edit. 40 (2001) 2479-2482.
DOI: 10.1002/1521-3773(20010702)40:13<2479::aid-anie2479>3.0.co;2-7
Google Scholar
[13]
F. Kapteijn, L. Singoredjo, A. Andreini, J.A. Moulijn, Activity and selectivity of pure manganese oxides in the selective catalytic reduction of nitric oxide with ammonia, Appl. Catal. B-Environ. 3 (1994) 173-189.
DOI: 10.1016/0926-3373(93)e0034-9
Google Scholar
[14]
S. Cimino, L. Lisi, M. Tortorelli, Low temperature SCR on supported MnOx catalysts for marine exhaust gas cleaning: Effect of KCl poisoning, Chem. Eng. J. 283 (2016) 223-230.
DOI: 10.1016/j.cej.2015.07.033
Google Scholar
[15]
S. Andreoli, F.A. Deorsola, C. Galletti, R. Pirone, Nanostructured MnOx catalysts for low-temperature NOx SCR, Chem. Eng. 278 (2015) 174-182.
DOI: 10.1016/j.cej.2014.11.023
Google Scholar
[16]
D.A. Pena, B.S. Uphade, P.G. Smirniotis, TiO2-supported metal oxide catalysts for low-temperature selective catalytic reduction of NO with NH3: I. Evaluation and characterization of first row transition metals, J. Catal. 221 (2004) 421-431.
DOI: 10.1016/j.jcat.2003.09.003
Google Scholar
[17]
Y. Yao, S.L. Zhang, Q. Zhong, X.X. Liu, Low-temperature selective catalytic reduction of NO over manganese supported on TiO2 nanotubes, J. Fuel Chem. Technol. 39 (2011) 694-701.
DOI: 10.1016/s1872-5813(11)60042-x
Google Scholar
[18]
J. Xiang, J.H. Qiu, Y.H. Xiong, X.X. Sun, An experimental research on performance of nitrogen oxide emission from boiler, Proceedings of the CSEE 20 (2000) 80-83.
Google Scholar
[19]
L.J. Fang, Z.Y. Gao, W.P. Yan, S.E. Hui, Experimental study on performance of NOx emission for low volatilization coals, Proceedings of the CSEE 23 (2003) 211-214.
Google Scholar
[20]
J. Blanco, P. Avila, S. Suárez, J.A. Martı́n, C. Knapp, Alumina-and titania-based monolithic catalysts for low temperature selective catalytic reduction of nitrogen oxides, Appl. Catal. B-Environ. 28 (2000) 235-244.
DOI: 10.1016/s0926-3373(00)00180-6
Google Scholar
[21]
H. Wu, Z.S. Liu, X.H. Wang, H.Y. Li, Preparation or titania washcoats on cordierite monolith deNOx catalysts, Pet. Process. Petroche. 44 (2013) 59-63.
Google Scholar
[22]
M. Radojevic, Reduction of nitrogen oxides in flue gases, Environ. Pollut. 102 (1998) 685-689.
DOI: 10.1016/s0269-7491(98)80099-7
Google Scholar
[23]
L. Zhu, B.J. Wu, J.X. Duan, L.Y. Cao, H.Q. Liu, Y. Zhao, L.L. Cao, Situation of production and application on selective catalytic reduction flue gas De-NOx catalysts, Elec. Pow. 42 (2009) 61-64.
Google Scholar
[24]
J.H. Mao, H. Song, W.H. Wu, Y. Zhong, K.Z. Qiu, X. Gao, Z.Y. Luo, K.F. Cen, Influence of preparation conditions on pore structure and activity of V2O5-WO3/TiO2 honeycomb catalysts, Pow. Eng. 31 (2011) 300-305.
Google Scholar
[25]
F. Mohino, A.B. Martin, P. Salerno, A. Bahamonde, S. Mendioroz, High surface area monoliths based on pillared clay materials as carriers for catalytic processes, Appl. Clay Sci. 29 (2005) 125-136.
DOI: 10.1016/j.clay.2004.12.003
Google Scholar
[26]
L.J. Huang, L. Geng, B. Wang, H.Y. Xu, B. Kaveendran, Effects of extrusion and heat treatment on the microstructure and tensile properties of in situ TiBw/Ti6Al4V composite with a network architecture, Compos. Part A-Appl. Sci. Manuf. 43 (2012).
DOI: 10.1016/j.compositesa.2011.11.014
Google Scholar
[27]
X.J. Wang, K.B. Nie, X.S. Hu, Y.Q. Wang, X.J. Sa, K. Wu, Effect of extrusion temperatures on microstructure and mechanical properties of SiCp/Mg-Zn-Ca composite, J. Alloy. Compd. 532 (2012) 78-85.
DOI: 10.1016/j.jallcom.2012.04.023
Google Scholar
[28]
C.B. Zhu, B.S. Jin, Z.P. Zhong, Experiment on honeycomb SCR catalysts in flue gas denitrification, J. Eng. Therm. Energy Pow. 24 (2009) 639-643.
Google Scholar
[29]
C.B. Zhu, B.S. Jin, Z.P. Zhong, Industry preparation and performance experiment of honeycomb SCR catalysts, Boiler Technol. 43 (2012) 69-74.
Google Scholar
[30]
Y. Gao, T. Luan, K. Cheng, T. Lv, Y.J. Zheng, Industrial experiment on selective catalytic reduction honeycomb catalyst, Proceedings of the CSEE 31 (2011) 21-28.
Google Scholar
[31]
T. Lin, H.D. Xu, W. Li, Q.L. Zhang, M.C. Gong, Y.Q. Chen, Preparation of Mn-Fe/ZrO2-TiO2 monolith catalyst and its properties for low-temperature NH3-SCR reaction, Chem. J. Chinese U. 30 (2009) 2240-2246.
Google Scholar
[32]
P.S. Metkar, N. Salazar, R. Muncrief, V. Balakotaiah, M.P. Harold, Selective catalytic reduction of NO with NH3 on iron zeolite monolithic catalysts steady-state and transient kinetics, Appl. Catal. B-Environ. 104 (2011) 110-126.
DOI: 10.1016/j.apcatb.2011.02.022
Google Scholar
[33]
J.D. Liu, Z.G. Huang, Z. Li, Q.Q. Guo, Q.Y. Li, Ce modification on Mn/TiO2/cordierite monolithic catalyst for low-temperature NOx reduction, Chem. J. Chinese U. 35 (2014) 589-595.
Google Scholar
[34]
T. Boger, A.K. Heibel, C.M. Sorensen, Monolithic catalysts for the chemical industry, Ind. Eng. Chem. Res. 43 (2004) 4602-4611.
DOI: 10.1021/ie030730q
Google Scholar
[35]
Y.Q. Li, Z.F. He, Y. Li, Q.W. Duan, Effect of lanthanum and cerium on the performance of noble metal catalyst for purification of vehicle tail gas, Pet. Process. Petroche. 35 (2004) 18-21.
Google Scholar
[36]
Q. An, C.G. Feng, Q.X. Zeng, Y.J. Wang, S.X. You, Progress in the research ceramic honeycomb carrier coating, Chem. 64 (2001) 135-140.
Google Scholar
[37]
D. Fang, J.L. Xie, H. Hu, J. Ma, Z.Y. Shi, F. He, Influence of the valence state of manganese ion on the activity of Mn supported catalysts for denitration, J. Wuhan Univ. Technol. 35 (2013) 37-40.
Google Scholar
[38]
F. Li, Study of SCR catalyst for coal-fired flue gas denitrification grafted on nanometer titania, Nanjing Southeast University, (2006).
Google Scholar
[39]
M.M. Bhasin, J.H. McCain, B.V. Vora, T. Imai, P.R. Pujadó, Dehydrogenation and oxydehydrogenation of paraffins to olefins, Appl. Catal. A-Gen. 221 (2001) 397-419.
DOI: 10.1016/s0926-860x(01)00816-x
Google Scholar
[40]
L.Y. Wu, Y.G. Shu, C. Liang, B.X. Shen, J.L. Ge, C. Zhou, Applicability study of middling temperature SCR DeNOx catalyst in high SO2 and high CaO ash, Elec. Pow. Environ. Prot. 24 (2008) 13-16.
Google Scholar
[41]
D. Fang, Low temperature De-NOx performance of Mn/TiO2 catalyst and its applicability, Wuhan University of Technology, (2015).
Google Scholar
[42]
J.J. Gu, D.Q. Kong, D.M. Gao, J.K. Liu, Calculation of the optimal set value of flue gas oxygen content for the optimization of combustion in power plant boiler, J. North China Elec. Pow. Univ. 34 (2007) 61-65.
Google Scholar
[43]
J.J. Cai, X.Q. Ma, Y.F. Liao, Study on boiler's operation performance and optimization of oxygen content in flue gas, Therm. Pow. Gen. 35 (2006) 28-30.
Google Scholar
[44]
J. Zhang, Y. Zhang, Study on key technical issues of SCR denitrification from coal-fired boiler flue gas, Elec. Pow. Environ. Prot. 27 (2011) 38-41.
Google Scholar