Experimental Study on Preparation and Operating Conditions over a Promising Monolithic Catalysts for NOx Removal: MnOx/TiO2/Cordierite

Article Preview

Abstract:

The samples of MnOx/TiO2 catalysts supported on cordierite honeycomb ceramics were prepared by a sol-gel-impregnation method, and evaluated for low-temperature (353-473 K) selective catalytic reduction (SCR) of NOx with NH3. The influences of pretreatment on cordierite and catalyst dosage were investigated at first and optimized as follows: pickling for cordierite honeycomb ceramics with 1 mol/L HNO3 for 3 h prior to loading procedure as well as the catalyst dosage of 3-5 wt.%. The activity results indicated that there was an optimum working condition for MnOx/TiO2/cordierite catalysts: NH3/NO molar ratio=1.1, [O2]=3 vol.%, GHSV=5514 h-1, the highest activity of nearly 100% NO conversion could be obtained. As a comparison, the performances of commercialized vanadium-based honeycomb catalyst were also employed, which revealed the narrower scope of application of GHSV and the higher active temperature window. In conclusion, it turns out that the prepared MnOx/TiO2/cordierite catalysts are more applicable as a low-temperature SCR catalyst for NOx removal in a more complicated application environment.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1905-1915

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Busca, L. Lietti, G. Ramis, F. Berti, Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: A review, Appl. Catal. B-Environ. 18 (1998) 1-36.

DOI: 10.1016/s0926-3373(98)00040-x

Google Scholar

[2] B. Guan, R. Zhan, H. Lin, Z. Huang, Review of state of the art technologies of selective catalytic reduction of NOx from diesel engine exhaust, Appl. Therm. Eng. 66 (2014) 395-414.

DOI: 10.1016/j.applthermaleng.2014.02.021

Google Scholar

[3] T.V. Johnson, Review of diesel emissions and control, Int. J. Engine Res. 10 (2009) 275-285.

Google Scholar

[4] S. Roy, M.S. Hegde, G. Madras, Catalysis for NOx abatement, Appl. Energ. 86 (2009) 2283-2297.

DOI: 10.1016/j.apenergy.2009.03.022

Google Scholar

[5] A. Marberger, M. Elsener, D. Ferri, O. Kröcher, VOx surface coverage optimization of V2O5/WO3-TiO2 SCR catalysts by variation of the V loading and by aging, Catalysts 5 (2015) 1704-1720.

DOI: 10.3390/catal5041704

Google Scholar

[6] K.Z. Qiu, J. Song, H. Song, X. Gao, Z.Y. Luo, K.F. Cen, A novel method of microwave heating mixed liquid-assisted regeneration of V2O5-WO3/TiO2 commercial SCR catalysts, Environ. Geochem. Hlth. 37 (2015) 905-914.

DOI: 10.1007/s10653-014-9663-y

Google Scholar

[7] J.P. Dunn, P.R. Koppula, H.G. Stenger, I.E. Wachs, Oxidation of sulfur dioxide to sulfur trioxide over supported vanadia catalysts, Appl. Catal. B-Environ. 19 (1998) 103-117.

DOI: 10.1016/s0926-3373(98)00060-5

Google Scholar

[8] J.P. Dunn, H.G. Stenger, I. E Wachs, Oxidation of SO2 over supported metal oxide catalysts, J. Catal. 181 (1999) 233-243.

DOI: 10.1006/jcat.1998.2305

Google Scholar

[9] M. Yates, J.A. Martín, M.Á. Martín-Luengo, S. Suárez, J. Blanco, N2O formation in the ammonia oxidation and in the SCR process with V2O5-WO3 catalysts, Catal. Today 107 (2005) 120-125.

DOI: 10.1016/j.cattod.2005.07.015

Google Scholar

[10] M. Koebel, M. Elsener, M. Kleemann, Urea-SCR a promising technique to reduce NOx emissions from automotive diesel engines, Catal. Today 59 (2000) 335-345.

DOI: 10.1016/s0920-5861(00)00299-6

Google Scholar

[11] X.D. Wu, W.C. Yu, Z.C. Si, W. Duan, Chemical deactivation of V2O5-WO3/TiO2 SCR catalyst by combined effect of potassium and chloride, Front. Env. Sci. Eng. 7 (2013) 420-427.

DOI: 10.1007/s11783-013-0489-0

Google Scholar

[12] P.G. Smirniotis, D.A. Pena, B.S. Uphade, Low-temperature selective catalytic reduction (SCR) of NO with NH3 by using Mn, Cr, and Cu oxides supported on Hombikat TiO2, Angew. Chem. Int. Edit. 40 (2001) 2479-2482.

DOI: 10.1002/1521-3773(20010702)40:13<2479::aid-anie2479>3.0.co;2-7

Google Scholar

[13] F. Kapteijn, L. Singoredjo, A. Andreini, J.A. Moulijn, Activity and selectivity of pure manganese oxides in the selective catalytic reduction of nitric oxide with ammonia, Appl. Catal. B-Environ. 3 (1994) 173-189.

DOI: 10.1016/0926-3373(93)e0034-9

Google Scholar

[14] S. Cimino, L. Lisi, M. Tortorelli, Low temperature SCR on supported MnOx catalysts for marine exhaust gas cleaning: Effect of KCl poisoning, Chem. Eng. J. 283 (2016) 223-230.

DOI: 10.1016/j.cej.2015.07.033

Google Scholar

[15] S. Andreoli, F.A. Deorsola, C. Galletti, R. Pirone, Nanostructured MnOx catalysts for low-temperature NOx SCR, Chem. Eng. 278 (2015) 174-182.

DOI: 10.1016/j.cej.2014.11.023

Google Scholar

[16] D.A. Pena, B.S. Uphade, P.G. Smirniotis, TiO2-supported metal oxide catalysts for low-temperature selective catalytic reduction of NO with NH3: I. Evaluation and characterization of first row transition metals, J. Catal. 221 (2004) 421-431.

DOI: 10.1016/j.jcat.2003.09.003

Google Scholar

[17] Y. Yao, S.L. Zhang, Q. Zhong, X.X. Liu, Low-temperature selective catalytic reduction of NO over manganese supported on TiO2 nanotubes, J. Fuel Chem. Technol. 39 (2011) 694-701.

DOI: 10.1016/s1872-5813(11)60042-x

Google Scholar

[18] J. Xiang, J.H. Qiu, Y.H. Xiong, X.X. Sun, An experimental research on performance of nitrogen oxide emission from boiler, Proceedings of the CSEE 20 (2000) 80-83.

Google Scholar

[19] L.J. Fang, Z.Y. Gao, W.P. Yan, S.E. Hui, Experimental study on performance of NOx emission for low volatilization coals, Proceedings of the CSEE 23 (2003) 211-214.

Google Scholar

[20] J. Blanco, P. Avila, S. Suárez, J.A. Martı́n, C. Knapp, Alumina-and titania-based monolithic catalysts for low temperature selective catalytic reduction of nitrogen oxides, Appl. Catal. B-Environ. 28 (2000) 235-244.

DOI: 10.1016/s0926-3373(00)00180-6

Google Scholar

[21] H. Wu, Z.S. Liu, X.H. Wang, H.Y. Li, Preparation or titania washcoats on cordierite monolith deNOx catalysts, Pet. Process. Petroche. 44 (2013) 59-63.

Google Scholar

[22] M. Radojevic, Reduction of nitrogen oxides in flue gases, Environ. Pollut. 102 (1998) 685-689.

DOI: 10.1016/s0269-7491(98)80099-7

Google Scholar

[23] L. Zhu, B.J. Wu, J.X. Duan, L.Y. Cao, H.Q. Liu, Y. Zhao, L.L. Cao, Situation of production and application on selective catalytic reduction flue gas De-NOx catalysts, Elec. Pow. 42 (2009) 61-64.

Google Scholar

[24] J.H. Mao, H. Song, W.H. Wu, Y. Zhong, K.Z. Qiu, X. Gao, Z.Y. Luo, K.F. Cen, Influence of preparation conditions on pore structure and activity of V2O5-WO3/TiO2 honeycomb catalysts, Pow. Eng. 31 (2011) 300-305.

Google Scholar

[25] F. Mohino, A.B. Martin, P. Salerno, A. Bahamonde, S. Mendioroz, High surface area monoliths based on pillared clay materials as carriers for catalytic processes, Appl. Clay Sci. 29 (2005) 125-136.

DOI: 10.1016/j.clay.2004.12.003

Google Scholar

[26] L.J. Huang, L. Geng, B. Wang, H.Y. Xu, B. Kaveendran, Effects of extrusion and heat treatment on the microstructure and tensile properties of in situ TiBw/Ti6Al4V composite with a network architecture, Compos. Part A-Appl. Sci. Manuf. 43 (2012).

DOI: 10.1016/j.compositesa.2011.11.014

Google Scholar

[27] X.J. Wang, K.B. Nie, X.S. Hu, Y.Q. Wang, X.J. Sa, K. Wu, Effect of extrusion temperatures on microstructure and mechanical properties of SiCp/Mg-Zn-Ca composite, J. Alloy. Compd. 532 (2012) 78-85.

DOI: 10.1016/j.jallcom.2012.04.023

Google Scholar

[28] C.B. Zhu, B.S. Jin, Z.P. Zhong, Experiment on honeycomb SCR catalysts in flue gas denitrification, J. Eng. Therm. Energy Pow. 24 (2009) 639-643.

Google Scholar

[29] C.B. Zhu, B.S. Jin, Z.P. Zhong, Industry preparation and performance experiment of honeycomb SCR catalysts, Boiler Technol. 43 (2012) 69-74.

Google Scholar

[30] Y. Gao, T. Luan, K. Cheng, T. Lv, Y.J. Zheng, Industrial experiment on selective catalytic reduction honeycomb catalyst, Proceedings of the CSEE 31 (2011) 21-28.

Google Scholar

[31] T. Lin, H.D. Xu, W. Li, Q.L. Zhang, M.C. Gong, Y.Q. Chen, Preparation of Mn-Fe/ZrO2-TiO2 monolith catalyst and its properties for low-temperature NH3-SCR reaction, Chem. J. Chinese U. 30 (2009) 2240-2246.

Google Scholar

[32] P.S. Metkar, N. Salazar, R. Muncrief, V. Balakotaiah, M.P. Harold, Selective catalytic reduction of NO with NH3 on iron zeolite monolithic catalysts steady-state and transient kinetics, Appl. Catal. B-Environ. 104 (2011) 110-126.

DOI: 10.1016/j.apcatb.2011.02.022

Google Scholar

[33] J.D. Liu, Z.G. Huang, Z. Li, Q.Q. Guo, Q.Y. Li, Ce modification on Mn/TiO2/cordierite monolithic catalyst for low-temperature NOx reduction, Chem. J. Chinese U. 35 (2014) 589-595.

Google Scholar

[34] T. Boger, A.K. Heibel, C.M. Sorensen, Monolithic catalysts for the chemical industry, Ind. Eng. Chem. Res. 43 (2004) 4602-4611.

DOI: 10.1021/ie030730q

Google Scholar

[35] Y.Q. Li, Z.F. He, Y. Li, Q.W. Duan, Effect of lanthanum and cerium on the performance of noble metal catalyst for purification of vehicle tail gas, Pet. Process. Petroche. 35 (2004) 18-21.

Google Scholar

[36] Q. An, C.G. Feng, Q.X. Zeng, Y.J. Wang, S.X. You, Progress in the research ceramic honeycomb carrier coating, Chem. 64 (2001) 135-140.

Google Scholar

[37] D. Fang, J.L. Xie, H. Hu, J. Ma, Z.Y. Shi, F. He, Influence of the valence state of manganese ion on the activity of Mn supported catalysts for denitration, J. Wuhan Univ. Technol. 35 (2013) 37-40.

Google Scholar

[38] F. Li, Study of SCR catalyst for coal-fired flue gas denitrification grafted on nanometer titania, Nanjing Southeast University, (2006).

Google Scholar

[39] M.M. Bhasin, J.H. McCain, B.V. Vora, T. Imai, P.R. Pujadó, Dehydrogenation and oxydehydrogenation of paraffins to olefins, Appl. Catal. A-Gen. 221 (2001) 397-419.

DOI: 10.1016/s0926-860x(01)00816-x

Google Scholar

[40] L.Y. Wu, Y.G. Shu, C. Liang, B.X. Shen, J.L. Ge, C. Zhou, Applicability study of middling temperature SCR DeNOx catalyst in high SO2 and high CaO ash, Elec. Pow. Environ. Prot. 24 (2008) 13-16.

Google Scholar

[41] D. Fang, Low temperature De-NOx performance of Mn/TiO2 catalyst and its applicability, Wuhan University of Technology, (2015).

Google Scholar

[42] J.J. Gu, D.Q. Kong, D.M. Gao, J.K. Liu, Calculation of the optimal set value of flue gas oxygen content for the optimization of combustion in power plant boiler, J. North China Elec. Pow. Univ. 34 (2007) 61-65.

Google Scholar

[43] J.J. Cai, X.Q. Ma, Y.F. Liao, Study on boiler's operation performance and optimization of oxygen content in flue gas, Therm. Pow. Gen. 35 (2006) 28-30.

Google Scholar

[44] J. Zhang, Y. Zhang, Study on key technical issues of SCR denitrification from coal-fired boiler flue gas, Elec. Pow. Environ. Prot. 27 (2011) 38-41.

Google Scholar