[1]
J. Wang, B. Chen, Adsorption and coadsorption of organic pollutants and a heavy metal by graphene oxide and reduced graphene materials, Chem. Eng. J. 281 (2015) 379-388.
DOI: 10.1016/j.cej.2015.06.102
Google Scholar
[2]
W.S. WanNgah, L.C. Teong, M.A.K.M. Hanafiah, Adsorption of dyes and heavy metal ions by chitosan composites: a review. Carbohydr. Polym. 83 (2011) 1446-1456.
DOI: 10.1016/j.carbpol.2010.11.004
Google Scholar
[3]
C.Y. Kuo, W. Hsin, J.Y. Wu, Adsorption of Direct Dyes from Aqueous Solutions by Carbon Nanotubes: Determination of Equilibrium, Kinetics and Thermodynamics Parameters. J. Colloid Interface Sci. 327 (2008) 308-15.
DOI: 10.1016/j.jcis.2008.08.038
Google Scholar
[4]
F. Deniz, R.A. Kepekci, Dye biosorption onto pistachio by-product: A green environmental engineering approach. J. Mol. Liq. 219 (2016) 194–200.
DOI: 10.1016/j.molliq.2016.03.018
Google Scholar
[5]
A. Bhatnagar, M. Sillanpää, Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment—a review, Chem. Eng. J. 157 (2010) 277-296.
DOI: 10.1016/j.cej.2010.01.007
Google Scholar
[6]
M.A.M. Salleh, D.K. Mahmoud, W.A.W.A. Karim, A. Idris, Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review, Desalination, 280 (2011) 1-13.
DOI: 10.1016/j.desal.2011.07.019
Google Scholar
[7]
C.H. Lin, C.H. Gung, J.Y. Wu, S.Y. Suen, Cationic dye adsorption using porous composite membrane prepared from plastic and plant wastes, J. Taiwan Ins. Chem. E. 51 (2015) 119-126.
DOI: 10.1016/j.jtice.2015.01.019
Google Scholar
[8]
W.M. Gitari, L.F. Petrik, O. Etchebers, et al. Utilization of fly ash for treatment of coal mines wastewater: Solubility controls on major inorganic contaminants, Fuel 87 (2008) 2450-2462.
DOI: 10.1016/j.fuel.2008.03.018
Google Scholar
[9]
S. Wang, H. Wu, Environmental-benign utilisation of fly ash as low-cost adsorbents, J. Hazard. Mater. B136 (2006) 482-501.
DOI: 10.1016/j.jhazmat.2006.01.067
Google Scholar
[10]
M. Visa, C. Bogatu, A. Duta, Tungsten oxide – fly ash oxide composites in adsorption and photocatalysis, J, Hazard, Mater, 289 (2015) 244-256.
DOI: 10.1016/j.jhazmat.2015.01.053
Google Scholar
[11]
F. Ogata, Y. Iwata, Naohito Kawasaki. roperties of novel adsorbent produced by hydrothermal treatment of waste fly ash in alkaline solution and its capability for adsorption of tungsten from aqueous solution, J. Environ. Chem. Eng. 3 (2015).
DOI: 10.1016/j.jece.2014.11.015
Google Scholar
[12]
M. Visa, L. Andronic, A. Duta. Fly ash-TiO2 nanocomposite material for multi - pollutants wastewater treatment, J. Environ. Manage. 150 (2015) 336-343.
DOI: 10.1016/j.jenvman.2014.10.026
Google Scholar
[13]
B. Li, Q. Hu, Adsorption of reactive brilliant blue KN-R by fly ash/ZnO composites, J. China University of Mining & Technology, 45 (2016) 418-425 (in Chinese).
Google Scholar
[14]
F.C. Wu, R.L. Tseng, R.S. Juang, Kinetic modeling of liquid-phase adsorption of reactive dyes and metal ions on chitosan, Water Res. 35 (2001) 613-618.
DOI: 10.1016/s0043-1354(00)00307-9
Google Scholar
[15]
Z. Yang, H. Li, H. Yan, et al, Evaluation of a novel chitosan-based flocculant with high flocculation performance, low toxicity and good floc properties, J. Hazard. Mate. 276 (2014) 480-488.
DOI: 10.1016/j.jhazmat.2014.05.061
Google Scholar
[16]
M. Vakili, M. Rafatullah, B. Salamatinia, et al. Application of chitosan and i ts derivatives as adsorbents for dye removal from water and wastewater: a review, Carbohydr. Polym. 113 (2014) 115-130.
DOI: 10.1016/j.carbpol.2014.07.007
Google Scholar