A New Green Approach for Recovery of Metallic Tungsten through Electrolysis of Tungsten Carbide Scrap Anode in Molten Salts

Article Preview

Abstract:

In this study, a new green approach has been developed for the recovery of tungsten by using tungsten carbide (WC) scrap material as consumable anode in LiCl-KCl molten salts at 773 K to produce metallic tungsten. The feasibility of the direct electrochemical dissolution of WC anode into metallic tungsten was evaluated based on the experimental verifications and electrochemical methods. The effects of the main technical parameters, including the cell voltage, electrolysis time and electrolysis temperature, on the dissolved condition of anode were studied and the optimal anode parameters were obtained. It was found that a large electrolytic voltage, high electrolytic temperature and long electrolysis time would be favorable for the dissolved state of the tungsten carbide anode under the same conditions. The cathode product was analyzed using scanning electron microscopy (SEM) and X-ray diffraction (XRD). It was found that the tungsten particles with a diameter of 100 nm could be prepared by this process in a molten salt bath. Linear sweep voltammetry was applied to investigate the dissolution of WC anode, and showed that the WC scrap material could be used as consumable anode to produce tungsten powder. Other electrochemical techniques including cyclic voltammetry , square-wave voltammetry and chronopotentiometry were employed to explore the electrochemical properties of tungsten ion derived from WC anode in LiCl-KCl melts. These results confirmed that electroreduction of tungsten ion in the melts proceeded in one step with four exchanged electrons.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1871-1879

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K.V. Sebastian, Properties of sintered and infiltrated tungsten–copper electrical contact material, Int. J. Powder Metall. 17(1981) 297-303.

Google Scholar

[2] R.M. German K.F. Hens, J.L. Johnson, Powder metallurgy processing of thermal management materials for microelectronic applications, Int. J. Powder Metall. 30(1994) 205-214.

Google Scholar

[3] S.B. Li,J.X. Xie, Processing and microstructure of functionally graded W/Cu composites fabricated by multi-billet extrusion using mechanically alloyed powders, Compos. Sci. Technol. 66(2006) 2329-2336.

DOI: 10.1016/j.compscitech.2005.11.034

Google Scholar

[4] N.I. Gerhardt, A.A. Palant, S.R. Dungan, Extraction of tungsten (VI), molybdenum (VI) and rhenium (VII) by diisododecylamine, Hydrometallurgy. 55(2000) 1-15.

DOI: 10.1016/s0304-386x(99)00068-7

Google Scholar

[5] A. Koutsospyros, W. Braida, C. Christodoulatos, D. Dermatas, N. Strigul, A review of tungsten: From environmental obscurity to scrutiny,J. Hazard. Mater. 136(2006) 1-19.

DOI: 10.1016/j.jhazmat.2005.11.007

Google Scholar

[6] E. Lassner, W.D. Schubert, Tungsten: Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds, Kluwer Academic/Plenum Publishers, New York, (1999).

Google Scholar

[7] K.B. Shedd, Flow studies for recycling metal commodities in the united states, Tungsten Recycling in the United States in 2000, Scienc e for a Changing World, U.S. Geological Survey, Reston, Virginia, (2005).

Google Scholar

[8] R. L . Paul, W.A.M. TeRiele, M.J. Nicol, A novel process for recycling tungsten carbide scrap, Int. J. Miner. Process. 15(1985) 41-56.

DOI: 10.1016/0301-7516(85)90022-5

Google Scholar

[9] Tungsten- An Over view: http: /www. azom. com/article. aspx?Art icleID=1201.

Google Scholar

[10] J.C. Lee, Kim, E.Y. Kim, J. h. Kim, W. Kim, B.D. Pande, Recycling of WC–Co hardmetal sludge by a new hydrometallurgical route, Int. J. Refrac. Met. Hard Mater. 29(2011) 365-371.

DOI: 10.1016/j.ijrmhm.2011.01.003

Google Scholar

[11] Z.S. Zhang, L.B. Chen, Y.H. He, P.Y. Huang, Recycling high density tungsten alloy powder by oxidization-reduction process, T. Nonferr. Meta. Soc. 12(2002) 450-453.

Google Scholar

[12] Luo, L., Miyazaki, T., Shibayama, A., Yen, W., Fujita, T., A novel process for recovery of tungsten and vanadium from a leach solution of tungsten alloy scrap, Mine. Eng. 16(2003) 665-670.

DOI: 10.1016/s0892-6875(03)00103-1

Google Scholar

[13] D. Murphy, S. Warren, G.J. Butterworth, Reclamation of tungsten from activated fusion reactor components, Fusion Eng. Des. 22, 379-392, (1993).

DOI: 10.1016/0920-3796(93)90005-3

Google Scholar

[14] B. Heshmatpour, R.E. McDonald , Recovery and refining of Rhenium, Tungsten, and Molybdenum from W-Re, Mo-Re and other alloy scraps,J. Alloys Compd. 86(1982) 121-128.

DOI: 10.1016/0022-5088(82)90196-5

Google Scholar

[15] X. Wang, C.F. Liao, Preparation and characterization of tungsten powder through molten salt electrolysis in a CaWO4–CaCl2–NaCl system, Int. J. Refrac. Met. Hard Mater. 31(2012) 205-209.

DOI: 10.1016/j.ijrmhm.2011.11.004

Google Scholar

[16] H. Nakajima, T. Nohira, R. Hagiwara, Electrodeposition of Metallic Tungsten in ZnCl2-NaCl-KCl-WCl4 Melt at 250℃, Electrochem. Solid-State Lett. 8(2005) C91-C94.

DOI: 10.1149/1.1921130

Google Scholar

[17] K. Nitta, T. Nohira, R. Hagiwara, Electrodeposition of tungsten from ZnCl2–NaCl–KCl–KF–WO3 melt and investigation on tungsten species in the melt, Electrochim. Acta. 55(2010)1278-1281.

DOI: 10.1016/j.electacta.2009.10.021

Google Scholar

[18] H. Nakajima, T. Nohira, R. Hagiwara, Electrodeposition of metallic tungsten films in ZnCl2–NaCl–KCl–KF–WO3 melt at 250 °C, Electrochim. Acta. 53(2007) 24-27.

DOI: 10.1016/j.electacta.2007.04.082

Google Scholar

[19] K. Nitta, S. Inazawa, K. Okada, Analysis of tungsten film electrodeposited from a ZnCl2–NaCl–KCl melt, Electrochim. Acta. 53(2007) 20-23.

DOI: 10.1016/j.electacta.2007.01.032

Google Scholar

[20] R. Abdulaziz, L. D. Brown, D. Inman, Novel fluidised cathode approach for the electrochemical reduction of tungsten oxide in molten LiCl–KCl eutectic, Electrochem. Commun. 41(2014) 44-46.

DOI: 10.1016/j.elecom.2014.01.022

Google Scholar

[21] H. Yabe, K. Ema, Y. Ito, The effect of silver ion on electrodepo sition of tungsten and tungsten carbide from molten chloride, Electrochim. Acta. 35(1990) 187-189.

DOI: 10.1016/0013-4686(90)85057-t

Google Scholar

[22] L.W. Hu ,Y. Song, J.B. Ge, S.Q. Jiao, J. Cheng, Electrochemical metallurgy in CaCl2-CaO melts on the basis of TiO2·RuO2 inert anode,J. Electrochem. Soc. 163(2016) E33-E38.

DOI: 10.1149/2.0131603jes

Google Scholar

[23] Y.J. Liang Y.C. Che, Manual of inorganic thermodynamic data. Shenyang: Northeastern university Press, Shenyang, (1994).

Google Scholar

[24] M.S. Krause,L. Ramalry, Analytical application of square wave voltammetry. Anal. Chem. 41 (1969) 1365-1369.

DOI: 10.1021/ac60280a008

Google Scholar