[1]
Gu J W, Zhang Q Y, Li H C, et al. Study on Preparation of SiO2/Epoxy Resin Hybrid Materials by Means of Sol-Gel. Polymer-Plastics Technology and Engineering, 2007, 46(10-12): 1129-1134.
DOI: 10.1080/03602550701558033
Google Scholar
[2]
Gu J, Zhang Q, Dang J, et al. Preparation and mechanical properties researches of silane coupling reagent modified β-silicon carbide filled epoxy composites. Polymer Bulletin, 2009, 62(5): 689-697.
DOI: 10.1007/s00289-009-0045-z
Google Scholar
[3]
Gu J, Zhang Q, Dang J, et al. Thermal conductivity epoxy resin composites filled with boron nitride. Polymers for Advanced Technologies, 2012, 23(6): 1025-1028.
DOI: 10.1002/pat.2063
Google Scholar
[4]
Ying L L, Chiu Y C, Wu C S. Preparation of silicon-/phosphorous-containing epoxy resins from the fusion process to bring a synergistic effect on improving the resin' thermal stability and flame retardancy. Journal of Applied Polymer Science, 2003, 87(3): 404-411.
DOI: 10.1002/app.11383
Google Scholar
[5]
Enami H, Imai T. Epoxy resin compositions. Theoretical & Applied Climatology, 2015: 1-12.
Google Scholar
[6]
Yang Y, Xian G, Li H, et al. Thermal aging of an anhydride-cured epoxy resin. Polymer Degradation & Stability, 2015, 118: 111-119.
DOI: 10.1016/j.polymdegradstab.2015.04.017
Google Scholar
[7]
Anderson B J. Thermal stability of high temperature epoxy adhesives by thermogravimetric analysis and adhesive strength. Polymer Degradation & Stability, 2011, 96(10): 1874-1881.
DOI: 10.1016/j.polymdegradstab.2011.07.010
Google Scholar
[8]
Nardone F, Ludovico M D, Basalo F J D C Y, et al. Tensile behavior of epoxy based FRP composites under extreme service conditions. Composites Part B Engineering, 2012, 43(3): 1468–1474.
DOI: 10.1016/j.compositesb.2011.08.042
Google Scholar
[9]
Zarrelli M, Skordos A A, Partridge I K. Investigation of cure induced shrinkage in unreinforced epoxy resin. Plastics Rubber & Composites, 2015, volume 31(31): 377-384.
DOI: 10.1179/146580102225006350
Google Scholar
[10]
Böer P, Holliday L, Kang H K. Independent environmental effects on durability of fiber-reinforced polymer wraps in civil applications: A review. Construction & Building Materials, 2013, 48(11): 360-370.
DOI: 10.1016/j.conbuildmat.2013.06.077
Google Scholar
[11]
Kalavagunta S, Naganathan S, Mustapha K N B. Capacity assessment and design of CFRP-strengthened steel channel columns. Indian Journal of Science & Technology, 2013, 6(4): 4255-4261.
DOI: 10.17485/ijst/2013/v6i4.10
Google Scholar
[12]
Sun J T, Huang Y D, Cao H L, et al. Effects of ambient-temperature curing agents on the thermal stability of poly(methylphenylsiloxane). Polymer Degradation & Stability, 2004, 85(1): 725-731.
DOI: 10.1016/j.polymdegradstab.2004.03.018
Google Scholar
[13]
Polezhaev Y V. Modern Problems of Thermal Protection. Journal of Engineering Physics &Thermophysics, 2001, 74(6): 1364-1374.
Google Scholar
[14]
Chen Y M, Ting J M. Ultra high thermal conductivity polymer composites. Carbon, 2002, 40(3): 359-362.
DOI: 10.1016/s0008-6223(01)00112-9
Google Scholar
[15]
Wang S, Liang R, Wang B, et al. Dispersion and thermal conductivity of carbon nanotube composites. Carbon, 2009, 47(1): 53-57.
DOI: 10.1016/j.carbon.2008.08.024
Google Scholar
[16]
Jiang W, Jin F L, Park S J. Thermo-mechanical behaviors of epoxy resins reinforced with nano-Al 2 O 3 particles. Journal of Industrial & Engineering Chemistry, 2012, 18(2): 594-596.
DOI: 10.1016/j.jiec.2011.11.140
Google Scholar
[17]
Yang K, Gu M. Enhanced thermal conductivity of epoxy nanocomposites filled with hybrid filler system of triethylenetetramine-functionalized multi-walled carbon nanotube/silane-modified nano-sized silicon carbide. Composites Part A Applied Science & Manufacturing, 2010, 41(2): 215-221.
DOI: 10.1016/j.compositesa.2009.10.019
Google Scholar
[18]
Zhou T, Wang X, Liu X, et al. Improved thermal conductivity of epoxy composites using a hybrid multi-walled carbon nanotube/micro-SiCfiller. Carbon, 2010, 48(4): 1171-1176.
DOI: 10.1016/j.carbon.2009.11.040
Google Scholar
[19]
Wang W, Yang X, Fang Y, et al. Enhanced thermal conductivity and thermal performance of form-stable composite phase change materials by using β-Aluminum nitride. Applied Energy, 2009, 86(7): 1196-1200.
DOI: 10.1016/j.apenergy.2008.10.020
Google Scholar
[20]
Ganguli S, Roy A K, Anderson D P. Improved thermal conductivity for chemically functionalized exfoliated graphite/epoxy composites. Carbon, 2008, 46(5): 806-817.
DOI: 10.1016/j.carbon.2008.02.008
Google Scholar
[21]
Jin F L, Park S J. Thermal properties of epoxy resin/filler hybrid composites. Polymer Degradation & Stability, 2012, 97(11): 2148-2153.
DOI: 10.1016/j.polymdegradstab.2012.08.015
Google Scholar
[22]
Zhang Y, Huang Y, Liu X, et al. Studies on the silicone resins cured with polymethylsilazanes at ambient temperature. Journal of Applied Polymer Science, 2003, 89(6): 1702-1707.
DOI: 10.1002/app.12433
Google Scholar
[23]
Gao J, Liu Y, Yang L. Thermal stability of boron-containing phenol formaldehyde resin. Polymer Degradation & Stability, 1999, 63(1): 19-22.
DOI: 10.1016/s0141-3910(98)00056-1
Google Scholar
[24]
Mutin P H. Control of the Composition and Structure of Silicon Oxycarbide and Oxynitride Glasses Derived from PolysiloxanePrecursors. Journal of Sol-Gel Science and Technology, 1999, 14(14): 27-38.
Google Scholar
[25]
Tang Y, Wang J, Li X, et al. Thermal stability of polymer derived SiBNCceramics. Ceramics International, 2009, 35(7): 2871-2876.
DOI: 10.1016/j.ceramint.2009.03.043
Google Scholar
[26]
Jin S Y, Guo K K, Qi H M, et al. High Yield Polyborosilazane Precursor for SiBN Ceramics. Advanced Materials Research, 2014: 409-414.
DOI: 10.4028/www.scientific.net/amr.1004-1005.409
Google Scholar
[27]
Camino G, Lomakin S M, Lazzari M. Polydimethylsiloxane thermal degradation Part 1. Kinetic aspects. Polymer, 2001, 42(6): 2395-2402.
DOI: 10.1016/s0032-3861(00)00652-2
Google Scholar