High Temperature Resistance of Polyborosilazane/Epoxy Resin Curing System

Article Preview

Abstract:

In this paper, Polyborosilazane (PBSZ) was successfully synthesized and used as curing agents for epoxy resin. FTIR, TGA, XRD, SEM were used to analyze the curing mechanism, curing temperature and thermal stability of the curing system. The results indicated that PBSZ could be used as curing agents for bisphenol A epoxy resin when its usage amount was 30-60 wt.% at the temperature between 100 ∼ 150 °C. Additionally, the thermal stability of PBSZ cured epoxy resin samples were better than that of epoxy resin cured with 4, 4-diaminodiphenylsulfone (DDS), showing a higher residual weight at 900°C. As PBSZ content increased, the residual weight of PBSZ cured epoxy resin at 900°C increased. When PBSZ content was 30%, the surface of cured epoxy resins was smooth without obvious defects. However, the surface became coarse when PBSZ content was further increased.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2294-2301

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Gu J W, Zhang Q Y, Li H C, et al. Study on Preparation of SiO2/Epoxy Resin Hybrid Materials by Means of Sol-Gel. Polymer-Plastics Technology and Engineering, 2007, 46(10-12): 1129-1134.

DOI: 10.1080/03602550701558033

Google Scholar

[2] Gu J, Zhang Q, Dang J, et al. Preparation and mechanical properties researches of silane coupling reagent modified β-silicon carbide filled epoxy composites. Polymer Bulletin, 2009, 62(5): 689-697.

DOI: 10.1007/s00289-009-0045-z

Google Scholar

[3] Gu J, Zhang Q, Dang J, et al. Thermal conductivity epoxy resin composites filled with boron nitride. Polymers for Advanced Technologies, 2012, 23(6): 1025-1028.

DOI: 10.1002/pat.2063

Google Scholar

[4] Ying L L, Chiu Y C, Wu C S. Preparation of silicon-/phosphorous-containing epoxy resins from the fusion process to bring a synergistic effect on improving the resin' thermal stability and flame retardancy. Journal of Applied Polymer Science, 2003, 87(3): 404-411.

DOI: 10.1002/app.11383

Google Scholar

[5] Enami H, Imai T. Epoxy resin compositions. Theoretical & Applied Climatology, 2015: 1-12.

Google Scholar

[6] Yang Y, Xian G, Li H, et al. Thermal aging of an anhydride-cured epoxy resin. Polymer Degradation & Stability, 2015, 118: 111-119.

DOI: 10.1016/j.polymdegradstab.2015.04.017

Google Scholar

[7] Anderson B J. Thermal stability of high temperature epoxy adhesives by thermogravimetric analysis and adhesive strength. Polymer Degradation & Stability, 2011, 96(10): 1874-1881.

DOI: 10.1016/j.polymdegradstab.2011.07.010

Google Scholar

[8] Nardone F, Ludovico M D, Basalo F J D C Y, et al. Tensile behavior of epoxy based FRP composites under extreme service conditions. Composites Part B Engineering, 2012, 43(3): 1468–1474.

DOI: 10.1016/j.compositesb.2011.08.042

Google Scholar

[9] Zarrelli M, Skordos A A, Partridge I K. Investigation of cure induced shrinkage in unreinforced epoxy resin. Plastics Rubber & Composites, 2015, volume 31(31): 377-384.

DOI: 10.1179/146580102225006350

Google Scholar

[10] Böer P, Holliday L, Kang H K. Independent environmental effects on durability of fiber-reinforced polymer wraps in civil applications: A review. Construction & Building Materials, 2013, 48(11): 360-370.

DOI: 10.1016/j.conbuildmat.2013.06.077

Google Scholar

[11] Kalavagunta S, Naganathan S, Mustapha K N B. Capacity assessment and design of CFRP-strengthened steel channel columns. Indian Journal of Science & Technology, 2013, 6(4): 4255-4261.

DOI: 10.17485/ijst/2013/v6i4.10

Google Scholar

[12] Sun J T, Huang Y D, Cao H L, et al. Effects of ambient-temperature curing agents on the thermal stability of poly(methylphenylsiloxane). Polymer Degradation & Stability, 2004, 85(1): 725-731.

DOI: 10.1016/j.polymdegradstab.2004.03.018

Google Scholar

[13] Polezhaev Y V. Modern Problems of Thermal Protection. Journal of Engineering Physics &Thermophysics, 2001, 74(6): 1364-1374.

Google Scholar

[14] Chen Y M, Ting J M. Ultra high thermal conductivity polymer composites. Carbon, 2002, 40(3): 359-362.

DOI: 10.1016/s0008-6223(01)00112-9

Google Scholar

[15] Wang S, Liang R, Wang B, et al. Dispersion and thermal conductivity of carbon nanotube composites. Carbon, 2009, 47(1): 53-57.

DOI: 10.1016/j.carbon.2008.08.024

Google Scholar

[16] Jiang W, Jin F L, Park S J. Thermo-mechanical behaviors of epoxy resins reinforced with nano-Al 2 O 3 particles. Journal of Industrial & Engineering Chemistry, 2012, 18(2): 594-596.

DOI: 10.1016/j.jiec.2011.11.140

Google Scholar

[17] Yang K, Gu M. Enhanced thermal conductivity of epoxy nanocomposites filled with hybrid filler system of triethylenetetramine-functionalized multi-walled carbon nanotube/silane-modified nano-sized silicon carbide. Composites Part A Applied Science & Manufacturing, 2010, 41(2): 215-221.

DOI: 10.1016/j.compositesa.2009.10.019

Google Scholar

[18] Zhou T, Wang X, Liu X, et al. Improved thermal conductivity of epoxy composites using a hybrid multi-walled carbon nanotube/micro-SiCfiller. Carbon, 2010, 48(4): 1171-1176.

DOI: 10.1016/j.carbon.2009.11.040

Google Scholar

[19] Wang W, Yang X, Fang Y, et al. Enhanced thermal conductivity and thermal performance of form-stable composite phase change materials by using β-Aluminum nitride. Applied Energy, 2009, 86(7): 1196-1200.

DOI: 10.1016/j.apenergy.2008.10.020

Google Scholar

[20] Ganguli S, Roy A K, Anderson D P. Improved thermal conductivity for chemically functionalized exfoliated graphite/epoxy composites. Carbon, 2008, 46(5): 806-817.

DOI: 10.1016/j.carbon.2008.02.008

Google Scholar

[21] Jin F L, Park S J. Thermal properties of epoxy resin/filler hybrid composites. Polymer Degradation & Stability, 2012, 97(11): 2148-2153.

DOI: 10.1016/j.polymdegradstab.2012.08.015

Google Scholar

[22] Zhang Y, Huang Y, Liu X, et al. Studies on the silicone resins cured with polymethylsilazanes at ambient temperature. Journal of Applied Polymer Science, 2003, 89(6): 1702-1707.

DOI: 10.1002/app.12433

Google Scholar

[23] Gao J, Liu Y, Yang L. Thermal stability of boron-containing phenol formaldehyde resin. Polymer Degradation & Stability, 1999, 63(1): 19-22.

DOI: 10.1016/s0141-3910(98)00056-1

Google Scholar

[24] Mutin P H. Control of the Composition and Structure of Silicon Oxycarbide and Oxynitride Glasses Derived from PolysiloxanePrecursors. Journal of Sol-Gel Science and Technology, 1999, 14(14): 27-38.

Google Scholar

[25] Tang Y, Wang J, Li X, et al. Thermal stability of polymer derived SiBNCceramics. Ceramics International, 2009, 35(7): 2871-2876.

DOI: 10.1016/j.ceramint.2009.03.043

Google Scholar

[26] Jin S Y, Guo K K, Qi H M, et al. High Yield Polyborosilazane Precursor for SiBN Ceramics. Advanced Materials Research, 2014: 409-414.

DOI: 10.4028/www.scientific.net/amr.1004-1005.409

Google Scholar

[27] Camino G, Lomakin S M, Lazzari M. Polydimethylsiloxane thermal degradation Part 1. Kinetic aspects. Polymer, 2001, 42(6): 2395-2402.

DOI: 10.1016/s0032-3861(00)00652-2

Google Scholar